
Note: When copying code examples from this
document, you may experience formatting
problems. Please copy code examples from
the online version available from:

http://www.helpsystems.com/intermapper/intermapper-
developer-guide

Developer Guide

Version 6.0
April 2016

http://www.helpsystems.com/intermapper/intermapper-developer-guide
http://www.helpsystems.com/intermapper/intermapper-developer-guide

Table of Contents

Introduction 5

Software License Agreement 6

Creating Your Own Probes 8

Anatomy of a Probe 10
The <header> Section 12
The <description> Section 17
The <parameters> Section 18
The <datasets> section 21
Automatically-Recorded Data Values 24
Probe Status Windows 32
IMML - InterMapper Markup Language 33
Probe Comments 35
Built-in Probe Variables and Macros 36
Using Persistent Variables 45

SNMP Probes 50

The <snmp-device-variables> Section 52
The <snmp-device-thresholds> Section 59
The <snmp-device-properties> Section 61
The <snmp-device-variables-ondemand> Section 62
The <snmp-device-display> Section 69
Using Disclosure Widgets 69
The <snmp-device-alarmpoints> Section 72
Alarm Point File Format 76
Probe Calculations 82
Specifying SNMP OIDs in Custom Probes 92
SNMP Probe Example 96

SNMP Trap Probes 98

The <snmp-device-variables> Section For Traps 99
The <snmp-device-display> Section for Traps 103
Trap Viewing and Logging 103
Example - Trap Viewer Probe 104
The Dartware MIB 109

TCP Probes 112

The <script> Section 115

The <script-output> Section 122
TCP Probe Command Reference 123
Measuring TCP Response Times 136
Example TCP Probe File 137

Command Line Probes 139

The <command-line> Section 142
The <command-exit> Section 143
The <command-display> Section 143
The <tool> Section 144
Command Line Probe Example 149
InterMapper Python Plugins 150
Nagios Plugins 152
Nagios Plugin Example 155
NOAA Weather Probe Example 156

PowerShell_Probe 160

PowerShell Probe Examples 161

Troubleshooting PowerShell Probes 169

Working With Probe Files 171

Installing and Reloading Probes 171
Modifying Built-in Probes 172
Sharing Probes 172

Troubleshooting Probes 173

Errors with Custom Probes 174
Debugging with the SNMPWalk Command 176
Using the SNMPWALK -o Option 179

InterMapper HTTP API 183

Importing & Exporting Files 184
Importing & Exporting Tables 187
Acknowledging with HTTP 189
HTTP API Scripting Examples 191

Retrieving Collected Data 199

InterMapper Database Schemas 199
Creating SQL Queries 200
Using the load_data() function 200

Customizing Web Pages 202

Target Files 203
Template Files 205
Directives 206
Quoted Links 209
Macro Reference 210
Web Pages Folder 217
MIME Types 219
Tip for Calling Charts 219

Command-line Options for InterMapper 220

Index 221

Introduction
Documents InterMapper and InterMapper RemoteAccess 6.0
Document built: 4/11/2016 10:30 AM

InterMapper is a network mon-
itoring and alerting program. It con-
tinually tests routers, servers,
hubs, and other computer devices
that are attached to your network.
If InterMapper detects a failure, it
sends notifications to one or more
individuals via sounds, e-mail,
pagers, or by running a program to
correct the problem.

Use this manual to learn about the
tools you can use to customize how
InterMapper monitors the network,
and to display data about those res-
ults.

Customizing InterMapper's Probes
(Pg 8)
Explains how to create your own
custom probes, and how to con-
figure them to add power and
flexibility to your network mon-
itoring.
InterMapper HTTP API (Pg 183)

Explains InterMapper's HTTP
API and how to use it to import
and export files and tables, and to use your own scripts to create acknow-
ledgements.
Customizing Web Pages (Pg 202)

Explains how you change the look and function of the web pages available from
InterMapper's built-in Web server.
Retrieving Collected Data (Pg 199)

A look at the InterMapper Database, with links to useful resources.

Please give us comments at the address listed below. Thanks!

www.helpsystems.com
InterMapper Feedback

- 5 -

Chapter 1

http://www.helpsystems.com/
mailto:support.intermapper@helpsystems.com

Chapter 1: Introduction

Software License Agreement
BY INSTALLING, COPYING OR OTHERWISE USING THE SOFTWARE PRODUCT
("Product"), YOU ACKNOWLEDGE THAT YOU HAVE READ THIS LICENSE
AGREEMENT (“Agreement”), UNDERSTAND IT, AND AGREE TO BE BOUND BY IT.*

LICENSE

Upon receipt of payment for the Product (which includes the software and accom-
panying documentation), the Company grants the licensing party identified in the
applicable final quote, purchase order or invoice (“Customer”) a perpetual limited,
non-exclusive, non-transferable license to use the Product solely on the system or
partition specified in Customer's order and solely for the Customer's internal busi-
ness purposes, and subject to all the terms and conditions of this Agreement.

The Customer shall not:

(i) transfer the Product to another system or partition without the Company’s writ-
ten consent;

(ii) permit any third party access to the Product, including, but not limited to,
external hosting or third party IT outsourcing vendors, without obtaining prior
written consent to such an arrangement from the Company;

(iii) reverse engineer, translate, disassemble, decompile, sell, rent, assign, lease,
manufacture, adapt, create derivative works from, or otherwise modify or dis-
tribute the Product or any part thereof;

(iv) copy, in whole or in part, the Product with the exception of one copy of the
Product for backup or archival purposes;

(v) delete any copyright, trademark, patent, or other notices of proprietary rights
of the Company as they appear anywhere in or on the Product.

The Company reserves all rights, title, interest, ownership, and proprietary rights
in and to the Product, including but not limited to, all copies of the Product and any
patent rights, copyrights, trademark rights, trade secret rights, and any other intel-
lectual property rights. The Product is protected both by United States law and
international treaty provisions.

The Product is provided "AS IS" WITHOUT WARRANTY, EXPRESS OR IMPLIED,
INCLUDING IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE COMPANY DOES NOT WARRANT
THAT THE PRODUCT WILL MEET THE CUSTOMER'S REQUIREMENTS, OPERATE IN
COMBINATION WITH OTHER SOFTWARE, OR BE UNINTERRUPTED OR ERROR-FREE.
In no event shall the Company be liable for any lost revenue, profit, or data, or for
special, indirect, consequential, incidental, or punitive damages arising out of the
use of or inability to use the Product even if the Company has been advised of the
possibility of such damages. In no event shall the Company's total liability to the
Customer exceed the amount of any license fee paid by the Customer to the Com-
pany for the Product. The foregoing limitations shall apply even if the remedy fails
of its essential purpose.

- 6 -

Software License Agreement

The Company may terminate this Agreement immediately if the Customer fails to
comply with any provision of this Agreement or if the Customer ceases to carry on
its present business or becomes insolvent, makes a general assignment for the
benefit of creditors, or is involved in a bankruptcy or receivership proceeding. The
Company's right to terminate this Agreement is in addition to and not in limitation
of any other available remedies. Upon termination, the Customer agrees to des-
troy the original and all copies of the Product in its possession or control. This
Agreement and any dispute arising from or relating to it shall be governed by and
construed and enforced in accordance with Minnesota law, without reference to con-
flicts of laws principles. Any legal action or proceeding shall be instituted in a state
or federal court in Hennepin County, Minnesota, USA. This Agreement constitutes
the complete agreement between the parties and supersedes all prior or con-
temporaneous agreements or representations, written or oral, concerning the sub-
ject matter of this Agreement including any purchase order or ordering document.
This Agreement may not be modified or amended except in writing and when
signed.

The Company, wholly owned by HelpSystems, LLC, may assign any or all of its
rights under this Agreement at any time without notice.

*Note to customers outside the U.S.: You also agree to be bound by any additional
license terms and conditions presented to you by the authorized Company dis-
tributor from whom you purchased the Product ("additional license terms"). The
additional license terms are incorporated in this Agreement to the extent they do
not explicitly conflict with any of the terms set forth above.

MAINTENANCE

The Customer may purchase maintenance for the Product by payment of a main-
tenance fee as set forth by the then current software product price list. Main-
tenance includes the following benefits:

l Refinements and corrections of the Product as they become available
provided these improvements are not separately priced and marketed by the
Company.

l Enhancements to interface the Product with new versions.
l The right to temporarily copy and use the Product on a different system loc-
ated at a hot site.

l Unlimited technical phone support.

Training services must be used within 6 months of being invoiced and all fees are
nonrefundable.

- 7 -

Creating Your Own Probes
For many Internet services, simply "pinging" a device is not a sufficient test of
whether it is operating correctly. InterMapper has a number of built-in probes that
can test different aspects of a device's operation, whether it's a web server,
router, database, LDAP server etc.

However, InterMapper's built-in probes may not test the kinds of devices you want
to monitor, or may not test them ways that are most useful to you. In such a case,
you can create your own probes. InterMapper's probes are defined by probe files,
simple text files that can be duplicated and modified using any standard text edit-
ing utility. When you create your own probe, it becomes a first-class citizen and
appears in the Set Probe window along with the built-in probes.

What is a probe?

A probe is a text file that specifies the way in which InterMapper tests a device. It
is essentially a plug-in. All of InterMapper's probes follow the same logic:

l The probe sends one or more queries, as SNMP requests or UDP datagrams or
over a TCP connection to the device being tested.

l The device responds (or fails to respond).
l If there is no response, InterMapper sets the device's status to DOWN.
l InterMapper examines the response(s) from the device, and sets the device's
status accordingly.

Parts of a Probe

All of the probe types listed below follow a similar structure. This is outlined in Ana-
tomy of A Probe (Pg 10), which explains the common sections of a probe, and the
sections that are specific to a particular probe type.

Types of Probes

InterMapper has several kinds of probes. You can use InterMapper's built-in
probes as-is, you can copy and modify them, or you can develop your own probes
from scratch. These are the different probe types:

l SNMP Probes (Pg 50) - InterMapper tests the device's status by sending
SNMP queries and comparing the results to user-specified thresholds.

l SNMP Trap Probes (Pg 98) - InterMapper can receive and process SNMP
traps, and can set the status of a probe based on the contents of the trap's
variables. You can create custom probes that alert you to problems in a cer-
tain device based on the contents of specific trap variables.

l TCP Probes (Pg 112) - InterMapper establishes a TCP connection to a
device. It then sends certain requests and evaluates the responses to determ-
ine the device's status. TCP probes uses the TCP Probe Scripting language (Pg
115) to create a sequence of commands, branching to different parts of the
script under specified conditions.

- 8 -

Chapter 2

Chapter 2: Creating Your Own Probes

l Command-line Probes (Pg 139) - InterMapper can invoke a program or
script (as if "from the command line"), and use the results to determine the
device's status.

l Big Brother Probes - Big Brother™ is an open-source network monitoring
program. InterMapper listens for reports from Big Brother clients and sets the
device's status accordingly.

It's fairly straightforward to modify the existing files to produce new probes. If you
make a new probe file that might be useful, please consider sending it to us. See
Sharing Probes (Pg 172) for more information.

- 9 -

Anatomy of a Probe

Anatomy of a Probe
Probe files have several sections, several of which are common to all probe types.
These are described below.

Each section contains a number of lines bracketed by

<section-name> ... </section-name>

You might want to open a separate window with the example probe file (Pg 137)
while reading the subsequent sections.

Sections common to all probes
The <header> Section (Pg 12)

Learn about the <header> section of the probe definition, including how the
probe is identified, how its name appears in the Probe Type menu, and the ver-
sion numbering system.
The <description> Section (Pg 17)

The <description> section specifies the help text that appears in the Set Probe
window and typically explains the function of the probe and the use of its para-
meters. Format the description using IMML, InterMapper's Markup language (Pg
33).
The <parameters> Section (Pg 18)

The <parameters> section defines the probe's parameters and how they are
presented in the Set Probe window.
Display Sections

Each probe type has its own output section, which controls what appears in the
device's Status window. In all probes, you format the appearance of Status win-
dow using IMML, InterMapper's Markup language (Pg 33).

Type-Specific Probe Sections

Each probe type has sections that are specific to that probe type.

Sections specific to SNMP Probes

Each custom SNMP probe has:

l An <snmp-device-variables> section (Pg 52) - Specifies which MIB vari-
ables to collect from the device.

l An <snmp-device-thresholds> section (Pg 59) - Specifies how those vari-
ables are to be tested against thresholds to determine the device's status.

l An <snmp-device-display> section (Pg 69) - Specifies what information
about the device and its links should be displayed in the Status window.

l The <snmp-device-properties> section (Pg 61) - Specifies certain
aspects of the SNMP queries sent to the device.

l The <snmp-device-alarmpoints> Section (Pg 72) - Allows you to define
conditions under which the device changes a particular device state.

- 10 -

Chapter 2: Creating Your Own Probes

Sections specific to SNMP Trap Probes

SNMP Trap Probes do not probe devices - they simply wait for traps to arrive. They
have some sections that are common to SNMP Probes, but work somewhat dif-
ferently.

l An <snmp-device-variables> section (Pg 10) - Specifies which MIB vari-
ables to collect from the device. These are set automatically when a trap is
received.

l An <snmp-device-thresholds> section (Pg 59) - Specifies how those vari-
ables are to be tested against thresholds to determine the device's status.

Sections Specific to TCP Probes

Each custom TCP probe can have:

l A <script> section (Pg 115) - This contains the probe's script. Scripts are
written in InterMapper's TCP Probe Scripting Language (Pg 115) , which uses
a sequence of commands and program flow that is similar to Basic. A rich set
of TCP commands (Pg 123) is available.

l A <script-output> section (Pg 122) - This contains the probe's output,
which is displayed in the Status window. Format the Status window using
IMML, InterMapper's Markup language (Pg 33).

Sections Specific to Command-line Probes

Each command-line probe also has:

l The <command-line> section (Pg 142) - builds the command-line, spe-
cifying the command path and any paramters to be sent with the command.

l The <command-exit> section (Pg 143) - allows you to control the state of
the device, depending on what is returned from the script.

l The <tool> section (Pg 144) - contains the code for a companion script
that is executed by the probe.

l The <command-display> section (Pg 143) - allows you to control what
appears in the device's Status window.

Other Information about Probes
Comments (Pg 35)

All probes use the same format for comments. The comment format is similar
to HTML comments.
Probe File Locations (Pg 16) and Probe File Names (Pg 16)

To use probe files, you must import them, and should follow recommended nam-
ing conventions.
Installing and Reloading Probes (Pg 171)

Before a modification to a probe becomes effective, you need to click the
Reload probes... button in the Set Probe window (circular arrow icon below
the left pane of the window).

- 11 -

The <header> Section

The <header> Section
The <header> section of a probe file contains a formal description of the probe. It
is defined as follows, with each header property having a name and a cor-
responding value.

<header>
..[part name] = "[value]"
</header>

Note: Information by which InterMapper uniquely identifies the probe is contained
in the header. While it is not required, HelpSystems strongly recommends that you
follow probe file naming conventions that correspond to the unique identifer in the
probe header.

Header Parts

type Describes the type of the probe file. InterMapper supports
the following probe types:

l builtin
l tcp-script
l custom-snmp
l custom-snmp-trap
l command-line
l cmd-line

 type = "cmd-line"

For custom SNMP probes, use the custom-snmp type.
For custom SNMP Trap probes, use the custom-snmp-
trap type.
For custom TCP probes, use the tcp-script type.
For command-line probes, use the command-line or
cmd-line type.

package The first part of the probe's full identifier. Typically, the
package is made up of the domain name of the organ-
ization that created the probe, with the labels reversed.

For example, all probes created by HelpSystems, LLC the
package statement is as follows:

 package = "com.dartware"

The package part guarantees that different organizations
can create probes without concern that their probe iden-
tifiers will conflict.

- 12 -

Chapter 2: Creating Your Own Probes

Note: The combination of [package].[probe_name]
together form the probe's full identifier. (In the example
below, the full identifier is "com.dartware.tcp.custom") By
convention, the name of the file that holds the probe defin-
ition is the same as the probe's full identifier. This is not
required, but it's a good idea. See Probe File Locations (Pg
16) and Probe File Names (Pg 16) below for more inform-
ation.

probe_name The second part of the probe's full identifier. The probe_
name may be whatever string the creating organization
chooses.

human_name The string that appears in the left pane of the Set Probe win-
dow. This string helps guides the user to select the probe for
a particular device.

version Provides a means to determine which probe file is the cur-
rent one. The format of the version is "#.#".

address_type A comma-separated list of one or more address types.
InterMapper implements "IP" and "AT".

port_number The IP port used by this probe.

display_name Specify the display_name to use with this probe, using for-
ward slashes to specify the heirarchy. To do this, add the
following line to the <header> section of the probe:

 display_name = "[top level]/[next level]/[next level]"

Example:

 display_name = "Custom/Command-line"

url_hint Assign a double-click action within the probe (making it the
pre-defined double-click action). To do this, add the fol-
lowing line to your <header> section of the probe:

url_hint = "url-to-invoke"

The following example would invoke the web browser to
the device's IP address and port

url_hint = "http://${address}:${port}"

- 13 -

The <header> Section

poll_interval Set the device's default poll interval to the indicated num-
ber of seconds. This overrides the map's default setting,
and might be used to avoid too-frequent polling for (phys-
ical) devices that should not be polled too often.

Setting the poll interval *for the device* will override this
poll_interval setting.

poll_interval = "300"

- 14 -

Chapter 2: Creating Your Own Probes

Sample Header Section

This is a sample header from the Custom TCP script.

<header>
 "type" = "tcp-script"
 "package" = "com.dartware"
 "probe_name" = "snmp.example"
 "human_name" = "Example SNMP probe"
 "display_name" = "Miscellaneous/Example SNMP Probe"
 "version" = "1.0"
 "address_type" = "IP,AT"
 "port_number" = "161"
 "flags" = ""
</header>

Header Section of Custom SNMP Probes

The <header> section of the probe file is similar to the standard <header> sec-
tion, (Pg 12) with the following differences:

l The "type" for a Custom SNMP probe is "custom-snmp".
l There is a FLAGS=xxx,xxx command that takes the following optional items
as parameters:

l NOLINKS - InterMapper will not poll links (interfaces) with SNMP
l SNMPV2C - InterMapper will use SNMPv2c to poll the device
l NOICMPFALLBACK - InterMapper will not send an ICMP ping to a device
if no SNMP responses return.

l MINIMAL - the probe queries only its own (specified) variables.
l NTCREDENTIALS - tells InterMapper to elevate its credentials using the
username and password found in the NT Services server settings panel
long enough to run the command line in the probe. (Windows only.)

l ALLOW-LOOPS - In some network equipment, the indices for the ifTable
and related tables do not proceed in the usual strictly increasing fash-
ion, jumping around instead. Adding this flag to the header will instruct
InterMapper to allow this situation. N.B. If the SNMP agent in your net-
work device doesn't stop returning values when every item in the table
has been read, set this flag to instruct InterMapper to loop over the
table continuously until 5000 reads have occurred, at which point it will
stop.

l IFINDEX-BUG - Some network equipment will respond incorrectly to
SNMP queries for the ifTable and related tables when InterMapper quer-
ies only certain entries in a sparse ifTable, rather than trying to query
each possible index in turn. Add this flag to the header to instruct Inter-
Mapper to work around this situation rather than attempting to be effi-
cient.

l LINKCRITICAL - If a link of a device goes down and the flag is set, the
device status changes to critical, and not to alarm, which is the default.

l NAGIOS3 - Use "flags" = "NAGIOS3" in the <header> of a command-
line probe to indicate that the return value should be treated as a
Nagios Plugin. See the Nagios Plugins section.

- 15 -

The <header> Section

Note: The old_protocol and old_script parts, added for backward compatibility,
are deprecated, and are ignored in any older probes that use them.

Probe File Locations

Probes files are saved in the Probes folder of the InterMapper Settings folder.

Probe File Names

The probe files are named with two parts separated by a period ("."). The parts
are:

l package name - must be unique for each organization creating probe files.

By convention, the package is composed of the organization's DNS domain
name, with the segments reversed. Thus, the built-in probes for InterMapper
all have a package of "com.dartware." Other organizations may create and
share their own probes, since the file names will not collide.

l probe name - identifies the probe.

For example, the built-in Custom TCP probe is defined in the file named:

com.dartware.tcp.custom

The probe's package name and probe name are defined in the probe definition's
header section. HelpSystems recommends that you name the file with the com-
bination of the package name and probe name, as shown above.

The header section of the probe definition in the example above contains these two
lines:

package = "com.dartware"
probe name = "tcp.custom"

- 16 -

Chapter 2: Creating Your Own Probes

The <description> Section
The Description section of a probe file contains text that will be displayed as a
description of the probe in the Set Probe window. All probe types can have a
description section. It is defined using the following tags:

<description> ... </description>

The description can be formatted using IMML, InterMapper's Markup Language.
The Example Probe File (Pg 137) shows a sample description section.

The Set Probe window, showing the description field. Note that the blue underlined
links are actually links to the relevant RFC specifications.

- 17 -

The <parameters> Section

The <parameters> Section
A probe can have one or more parameters. These parameters are set by the user
in the Set Probe window (shown below). They are used for specifying numeric
thresholds or strings to be sent to or received from the device.

The parameter section of the defines a set of name/value pairs with the format:

<parameters>
[parameter name]= "[parameter value]"

</parameters>

Each parameter name/value appears in its own entry field in the Set Probe win-
dow.

Probe parameters are accessed and used just like variables. They can be used in
calculations, alarm/warning thresholds, and displayed in the status window. To
refer to a parameter whose name contains one or more spaces, the name will need
to be enclosed in curly braces. (Example: "${Seconds to wait}").

Input Field Types

Four types of input fields are available:

l Text - Input a text string
l Password - Input a text string, obscuring the characters
l Dropdown - Choose from a dropdown menu.
l Checkbox - Set a variable to true or false by selecting or clearing a check
box.

Text Fields

This field type presents a simple text box for entering a string.

"Text" = "Text Value"

The line above sets the variable ${Text}

Password Fields

You can create input parameters that conceal the string from casual view (so-
called password parameters.) The data is displayed as a line of asterisks ("*****")
when a user types the password. To specify a password parameter, place a single
asterisk ("*") after the name of the field, like this:

"Password*" = ""

Note that the variable name remains ${Password*} and you have to refer to it as
such in your script. The "*" is removed before displaying the name, so the above
password parameter would appear as "Password" in the Set Probe window.

- 18 -

Chapter 2: Creating Your Own Probes

Dropdown Fields

You can create input parameter fields that present a dropdown menu from which
the user can choose from a number of choices.

To create a dropdown field, use this syntax:

"Test[Equal,NotEqual]" = "NotEqual" //Default value is NotEqual

The values between brackets define the choices available to the user. The value on
right of the statement is the initial value of the dropdown field.

You can use this parameter in expressions. The full variable is ${Test
[Equal,NotEqual]}, and it returns the current value of the dropdown as selected by
the user. To display the value of a dropdown in the Status window, you must use
the full variable definition.

\4\Dropdown:\0\ ${Test[Equal,NotEqual]}\0\

<snmp-device-variables>
alarm: (${Dropdown[Choice1,Choice2,Choice3]} !=

 "Choice2") "It's not Choice2!"
</snmp-device-variables>

Check Box Fields

To create a check box, use this syntax:

"Checkbox[true,false]" = "true" //Default value is "true"

You can use this parameter in expressions. The full variable is ${Checkbox
[Equal,NotEqual]}, and it returns the current value of the check box as selected by
the user

- 19 -

The <parameters> Section

Parameter Section Example

This is an example parameter section that demonstrates the use of the four types
of input fields. The screenshot below shows how each input field type appears.

<parameters>
 "Text" = "Text Value"
 "Password*" = ""
 "Dropdown[Choice1,Choice2,Choice3]" = "Choice2"
 "Checkbox[true,false]" = "true"
</parameters>

Probe Parameters

- 20 -

Chapter 2: Creating Your Own Probes

The <datasets> section
Use the <datasets> section to define the datasets available for a probe. You can
also specify which datasets are recorded automatically by default.

Note: The <datasets> section replaces the deprecated <autorecord> section.
Documentation for the <autorecord> section is below.

The syntax for a <datasets> section is as follows. All columns except Column 1
should be in quotes.

<datasets>
 $variablename, "tag", "unitsOfMeasure", "autorecordFlag", "legend"
 ...
</datasets>

where:

l $variablename - a variable defined by the probe
l tag - a short tag that identifies a particular class of dataset. Use these tags to
create a report of like variables, such as CPU%, temperature, etc. See the
Automatically-Recorded Data Values (Pg 24) page to view pre-defined tags.
Probe writers are free to create their own short tags as long as they don't
start with "_".

l unitsOfMeasure - the unit of measure used with the dataset. Choose from
the list of Units of Measures below.

l autorecordFlag - a boolean flag that specifies whether the dataset should be
recorded or not.

l Legend - a human-readable text string that appears as the legend label for
the dataset. This legend overrides a legend placed in a <snmp-device-vari-
able> section.

Example

<datasets>
 $temp, "temp-tag", "degrees C", "false", "The Temperature"
 $atemp, "atemp-tag", "degrees C", "true", "Autorecord Temperature"
</datasets>

Auto-recording values

Certain data values collected from a device are recorded to the InterMapper Data-
base automatically. You can specify other variables you want to record by default
when data for a device is stored.

For all probes, the following data is recorded:

l response time (in msec) - tag: BiRt
l short-term packet loss (%) - tag: RPkL
l input byte rates for all visible interfaces - tag:BytR
l output byte rates for all visible interfaces - tag: BytT

- 21 -

The <datasets> section

In addition to the values listed above, built-in probes automatically record other
values. The Automatically-Recorded Data Values (Pg 24) page lists those values
for each built-in probe.

For your own probes, you can specify that a dataset should be recorded by setting
its autorecordFlag value to true.

Units of Measure

Use the following units in the unitsOfMeasure column of the <datasets> section.

Symbol Description
percent percent
min minutes
sec seconds
msec milliseconds
bytes bytes
kbytes kilobytes
packets packets
errors errors
discards discards
frames/sec frames per second
bytes/sec bytes per second
bits/sec bits per second
mbits/sec megabits per second
discards/min discards per minute
errors/min errors per minute
errors/sec errors per second
failures/sec failures per second
retries/sec retries per second
packets/sec packets per second
requests/sec requests per second
degrees C degrees celsius
degrees F degrees fahrenheit
dBm the power ratio in decibels of the measured power

referenced to one milliwatt
miles a measure of wireless transmission range, (for

how many miles it is useful)
volts volts

- 22 -

Chapter 2: Creating Your Own Probes

The <autorecord> section (deprecated)

The <autorecord> section has been replaced by the <datasets> section, which
provides a control for auto-recording any dataset. The autorecord section is avail-
able for backward compatibility; syntax is provided here for reference.

<autorecord>
 $var1, 'tag1', "Legend 1 :units(xxx)"
 $var2, 'tag2', "Legend 2"
 $var3, 'tag3', "Legend 3"
</autorecord>

where:

l $varX is a variable defined by the probe
l tagX is a short tag that identifies a particular class of dataset. Use these tags
to create a report of like variables, such as CPU%, temperature, etc. See the
Automatically-Recorded Data Values (Pg 24) page to view pre-defined tags.
Probe writers are free to create their own short tags as long as they don't
start with "_".

l Legend X :units(xxx) is a human-readable text string that describes the
dataset, and shows the customer the kinds of data being collected for a par-
ticular device. Specify the units for the dataset using the optional ":units"
attribute. This legend overrides a legend placed in a <snmp-device-vari-
able> section. In the <datasets> section, :units(xxx) has been replaced with
unitsOfMeasure.

Example

<autorecord>
 $lcpu.busyPer, 'cpupercent', "CPU Percent :units(%)"
 $lcpu.avgBusy1, 'cpupercentavg', "Average CPU Percent :units(%)"
 $lmem.freeMem, 'freemem', "Available memory :units(bytes)"
</autorecord>

- 23 -

Automatically-Recorded Data Values

Automatically-Recorded Data Values
The following values were selected to be recorded automatically from built-in
probes.

Probe Name/
File Name

Variable Name Tag(30) Units Legend
(255)

Mis-
cellaneous/Legacy/Cisco
(v2c)
com.dart-
ware.snmpv2c.cisco

$lcpu.busyPer cpupercent percent
CPU Per-
cent
Busy

$lcpu.avgBusy1 cpu-
percentavg percent

Average
CPU Per-
cent over
1 min

$lcpu.avgBusy5 cpu-
percentavg percent

Average
CPU Per-
cent over
5 min

$lmem.freeMem freemem bytes Available
Memory

Miscellaneous/TCP Check
com.dart-
ware.snmp.tcpcheck

$tcpCurrEstab numconns

Number
of TCP
Con-
nections

Network Devices/Cis-
co/Cisco - IP SLA Jitter
com.dartware.snmp.cisco-
ip-sla.txt

$cpmCPUTotal1min cpu-
percentavg percent

Average
CPU Per-
cent

$AvgJitter jitteravg msec
Average
Jitter
Value

$AvgLatency latencym-
sec msec Average

Latency

$PercentPacketLoss pktloss percent

Jitter
Test
Packet
Loss

Network Devices/Cis-
co/Cisco - Old CPU MIB
com.dartware.snmp.cisco

$lcpu.busyPer cpupercent percent
CPU Per-
cent
Busy

$lcpu.avgBusy1 cpu-
percentavg percent

Avg. CPU
Percent
over 1
min

- 24 -

Chapter 2: Creating Your Own Probes

$lcpu.avgBusy5 cpu-
percentavg percent

Avg. CPU
Percent
over 5
min

$lmem.freeMem freemem bytes Available
Memory

Network Devices/Cis-
co/Cisco - Process and
Memory Pool
com.dart-
ware.snmp.cisconewmib

$lcpu.busyPer cpupercent percent
CPU Per-
cent
Busy

$lcpu.avgBusy1 cpu-
percentavg percent

Avg. CPU
Percent
over 1
min

$lcpu.avgBusy5 cpu-
percentavg percent

Avg. CPU
Percent
over 5
min

$cis-
coMemoryPoolFree1 freemem bytes

Available
Memory
#1

$cis-
coMemoryPoolFree2 freemem bytes

Available
Memory
#2

Network
Devices/UPS/APC UPS -
AP961x
com.dartware.ups.apc-
ap961x.txt

$leftCharge pctcharge percent Percent
Charge

$batMin batttimeleft min
Time left
on bat-
tery

$inVolt involts volts Input
Voltage

$batTempC tem-
perature

degrees
C

Battery
Tem-
perature
(°C)

Network
Devices/UPS/APC UPS
com.dartware.ups.apc.txt

$leftCharge pctcharge percent Percent
Charge

$batMin batttimeleft min
Time left
on bat-
tery

$inVolt involts volts Input
Voltage

- 25 -

Automatically-Recorded Data Values

$batTempC tem-
perature

degrees
C

Battery
Tem-
perature
(°C)

Network
Devices/UPS/BestPower
UPS
com.dart-
ware.ups.bestpower.txt

$cTimeOnBattery batttimeleft min

Time Left
on Bat-
tery
(min)

$cInputVoltage involts volts Input
Voltage

$cIntTempC tem-
perature

degrees
C

Internal
Tem-
perature
(C)

Network Devices/UPS/Ex-
ide UPS
shef.ac.uk.ups.exide.txt

$LeftCharge pctcharge percent
Battery
Charge
Left

$LeftMin batttimeleft min
Time Left
on Bat-
tery

$in1Volt involts volts Input 1
Voltage

Network
Devices/UPS/Liebert
UPS - OpenComms
com.dartware.ups.liebert-
opencomms.txt

$LeftCharge pctcharge percent Percent
Charge

$LeftMin batttimeleft min
Time Left
on Bat-
tery

$in1Volt involts volts Input 1
Voltage

$batteryTempC tem-
perature

degrees
C

Battery
Tem-
perature
(°C)

Network
Devices/UPS/Standard
UPS (RFC1628)
com.dart-
ware.ups.standard.txt

$LeftCharge pctcharge percent Percent
Charge

$LeftMin batttimeleft min
Time Left
on Bat-
tery

$in1Volt involts volts Input 1

- 26 -

Chapter 2: Creating Your Own Probes

Voltage

$batTempC tem-
perature

degrees
C

Battery
Tem-
perature

Network
Devices/UPS/TrippLite
UPS
com.dart-
ware.ups.tripplite.txt

$LeftCharge pctcharge percent Percent
Charge

$LeftMin batttimeleft min
Time Left
on Bat-
tery

$in1Volt involts volts Input 1
Voltage

$envTempC tem-
perature

degrees
C

Ambient
Tem-
perature
(°C)

$envHumid humidity percent Ambient
Humidity

Network
Devices/UPS/Victron
UPS
de.-
medi-
anet.freinet.ups.victron.txt

$batt.rem batttimeleft min

Battery
Time
Remain-
ing

$input.volt1 involts volts
Input
Voltage
Phase 1

Servers-Pro-
prietary/Apple/OS X
Server/AFP
com.dart-
ware.tcp.osxserver.afp.txt

$currentConnections connections Con-
nections

$currentThroughput throughput bytes/se-
c

Through-
put

Servers-Pro-
prietary/Apple/OS X
Server/FTP
com.dart-
ware.tcp.osxserver.ftp.txt

$realCon-
nectionCount authconns

Authentic-
ated Con-
nections

$an-
onym-
ousConnectionCount

anonconns
Anonym-
ous Con-
nections

Servers-Pro-
prietary/Apple/OS X $cpu cpupercent percent CPU

Usage

- 27 -

Automatically-Recorded Data Values

Server/Info
com.dart-
ware.tcp.osxserver.info.txt
Servers-Pro-
prietary/Apple/OS X
Server/NAT
com.dart-
ware.tcp.osxserver.nat.txt

$activeTCP tcpconns TCP Links

$activeUDP udpconns UDP
Links

$activeICMP icmpconns ICMP
Links

Servers-Pro-
prietary/Apple/OS X
Server/Print
com.dart-
ware.tcp.osxserver.print.txt

$currentQueues queues Current
Queues

$currentJobs numjobs Spooled
Jobs

Servers-Pro-
prietary/Apple/OS X
Server/QTSS
com.dart-
ware.tcp.osxserver.qtss.txt

$currentConnections connections Con-
nections

$currentThroughput throughput bytes/se-
c

Through-
put

Servers-Pro-
prietary/Apple/OS X
Server/Web
com.dart-
ware.tcp.osxserver.web.txt

$cur-
rentRequestsBy10 requestrate request-s/sec

Request
Rate

$cacheCur-
rentRequestsBy10

request-
ratecache

request-
s/sec

Cache
Request
Rate

$currentThroughput throughput bytes/se-
c

Through-
put

$cacheCur-
rentThroughput

through-
putcache

bytes/se-
c

Cache
Through-
put

Servers-Pro-
pri-
etary/Barracuda/Barracuda
HTTP
com.dart-
ware.tcp.barracuda.http.txt

$in_queue_size inqueue Input
Queue

$out_queue_size outqueue Output

- 28 -

Chapter 2: Creating Your Own Probes

Queue

$avg_latency latencysec sec
Average
Message
Latency

Servers-Pro-
pri-
etary/Barracuda/Barracuda
HTTPS
com.dart-
ware.tcp.barracuda.https.txt

$in_queue_size inqueue Input
Queue

$out_queue_size outqueue Output
Queue

$avg_latency latencysec sec
Average
Message
Latency

Servers-Pro-
prietary/Microsoft/DHCP
Lease Check
com.dart-
ware.snmp.dhcpcheck.txt

$noAddFree dhcpfree

Number
of DHCP
Leases
Free

$noAddInUse dhcpinuse

Number
of DHCP
Leases In
Use

$noPending dhcp-
pending

Number
of Pend-
ing
Offers

Servers-Stand-
ard/Custom TCP
com.dartware.tcp.custom

$_connect conntime msec

Time to
establish
con-
nection

$_active connactive msec

Time
spent con-
nected to
host

Servers-Standard/Host
Resources
com.dartware.snmp.hrmib

$_CPUUtilization cpu-
percentavg percent

Average
CPU Per-
cent

Servers-Standard/HTTP
& HTTPS/HTTP (Follow
Redirects)
com.dartware.tcp.http.follow

$_connect conntime msec

Time to
establish
con-
nection

$_active connactive msec

Time
spent con-
nected to
host

- 29 -

Automatically-Recorded Data Values

Servers-Standard/HTTP
& HTTPS/HTTP (Post)
com.dart-
ware.tcp.http.cgi.post

$_connect conntime msec

Time to
establish
con-
nection

$_active connactive msec

Time
spent con-
nected to
host

Servers-Standard/HTTP
& HTTPS/HTTP (Proxy)
com.dartware.tcp.http.proxy

$_connect conntime msec

Time to
establish
con-
nection

$_active connactive msec

Time
spent con-
nected to
host

Servers-Standard/HTTP
& HTTPS/HTTP (Redirect)
com.dart-
ware.tcp.http.redirect

$_connect conntime msec

Time to
establish
con-
nection

$_active connactive msec

Time
spent con-
nected to
host

Servers-Standard/HTTP
& HTTPS/HTTP
com.dartware.tcp.http

$_connect conntime msec

Time to
establish
con-
nection

$_active connactive msec

Time
spent con-
nected to
host

Servers-Standard/HTTP
& HTTPS/HTTPS (Follow
Redirects)
com.dart-
ware.tcp.https.follow

$_connect conntime msec

Time to
establish
con-
nection

$_active connactive msec

Time
spent con-
nected to
host

Servers-Standard/HTTP
& HTTPS/HTTPS (Post)
com.dart-
ware.tcp.https.cgi.post

$_connect conntime msec

Time to
establish
con-
nection

$_active connactive msec Time

- 30 -

Chapter 2: Creating Your Own Probes

spent con-
nected to
host

Servers-Standard/HTTP
& HTTPS/HTTPS (SSLv3)
com.dart-
ware.tcp.https.notls.txt

$_connect conntime msec

Time to
establish
con-
nection

$_active connactive msec

Time
spent con-
nected to
host

Servers-Standard/HTTP
& HTTPS/HTTPS
com.dartware.tcp.https

$_connect conntime msec

Time to
establish
con-
nection

$_active connactive msec

Time
spent con-
nected to
host

SNMP/Comparison
com.dart-
ware.s-
nmp.oidcomparison.txt

$theOID $Tag $Units $Legend

SNMP/High Threshold
com.dart-
ware.snmp.oidhigh.txt

$theOID $Tag $Units $Legend

SNMP/Low Threshold
com.dart-
ware.snmp.oidlow.txt

$theOID $Tag $Units $Legend

SNMP/Range Threshold
com.dart-
ware.snmp.oidrange.txt

$theOID $Tag $Units $Legend

SNMP/Single OID Viewer
com.dart-
ware.snmp.oidsingle.txt

$theOID $Tag $Units $Legend

SNMP/String Comparison
com.dart-
ware.s-
nmp.oidstrcomparison.txt

$theOID $Tag $Units $Legend

- 31 -

Probe Status Windows

Probe Status Windows
When you create a custom probe, you can override the default contents of Status
windows. How you do this depends on the type of probe, as follows:

l The <snmp-device-display> (Pg 69) section - for SNMP probes
l The <snmp-device-display> (Pg 103) section - for SNMP trap probes
l The <script-output> (Pg 122) section - for TCP probes
l The <command-display> (Pg 143) section - for Command-line probes

All of these sections can be formatted using IMML, InterMapper's Markup
Language. See the <snmp-device-display> example below.

Controlling the Status window in SNMP Probes with <snmp-device-dis-
play>

Use the optional <snmp-device-display> section to describe the text that appears
in a custom SNMP probe's Status window. Probe variables are replaced with their
values in the Status window's text.

The default font for the Status window's text is a mono-spaced font, so alignment
of text is straightforward. You can change the appearance of the text in the Status
window using IMML, InterMapper's Markup Language.

Here is a sample <snmp-device-display> section. Note that the variables are
replaced with the values retrieved from the device, and that formatting is con-
trolled by IMML.

<snmp-device-display>
\B5\Custom SNMP Probe\0P\
\4\ipForwDatagrams:\0\ ${ipForwDatagrams} datagrams/sec
\4\ipInHdrErrors:\0\ ${ipInHdrErrors} errors/minute
\4\tcpCurrEstab:\0\ ${tcpCurrEstab} connections

</snmp-device-display>

Controlling the Status window in TCP Probes with <script-output>

Use the optional <script-output> section to describe the text that appears in a
TCP-based custom probe's Status window. The data in this section appears in the
Status window when you click and hold the device on the map.

Controlling the Status window in Command-Line Probes with <command-
display>

Use the optional <command-display> section to describe the text that appears in a
command-line-based custom probe's Status window. The data in this section
appears in the Status window when you click and hold the device on the map.

The format of this section is the same as the <snmp-device-display> section
described above.

- 32 -

Chapter 2: Creating Your Own Probes

IMML - InterMapper Markup Language
You can apply text styles to a probe's description text or to the content in a Status
window using IMML, InterMapper's markup language. IMML consists of formatting
commands bracketed by backslash ("\") characters. There may be many markup
commands between a pair of \...\ characters. The Example Probe File (Pg 137)
shows a sample description section.

Historical note: Prior to InterMapper 4.0, the markup characters were « and »
(≤ and ≥). InterMapper still accepts these characters, although we encour-
age everyone to use the \...\ in new probe files as they're easier to type and will
pass unchanged through all mail systems.

How Markup Tags Are Applied

l A markup commands applies to all text that follows it.
l Subsequent markup tags may add to or counteract a previous set of markup
tags.

Markup Tag Summary
Tag Action
M Set the font to a mono-spaced font.
G Set the font to Geneva or other proportional-spaced font).
+ Increase the font size by one. Multiples ("++") increase the font size by the

corresponding amount.
- Decrease the font size by one. Multiples are allowed.
B Set following text in bold.
I Set following text in italic.
P Set following text to plain. This undoes all other stylings
U Set following text to underlined. See Creating a link below for making

hyperlinks.
! Turn off a format that is on.

digit Set text color to one of the following:

0: Black 4: Light blue

1: Red 5: Green

2: Blue 6: Orange

3: Gray 7: Yellow

- 33 -

IMML - InterMapper Markup Language

Examples

The following description text is rendered as shown:

\b\Bold \i\Bold Italic \!b\Italic
\p\Plain Bold Bold Italic Italic Plain

\M1++\Big red monospace\p\ Big red monospace

\2U\http://www.example.com\p0\ http://www.example.com

\2U=http://www.example.com\Text
Link\p0\ Text Link

Creating a link

The last two examples above shows the script code required to create a link. In
both example, "\2U\" means "set the color to blue, underline the text."

Special Cases:

l If, as in the first of the two link examples above, the only text between the
opening and closing tags is a URL (e.g., http://www.example.com), Inter-
Mapper treats it as a link to that page.

l If, as in the last link example above, the underline tag contains "=[URL]", the
text following the backslash ("Text Link" in the example) appears as blue and
underlined.

l In both cases, clicking the text opens that page in a browser.

- 34 -

Chapter 2: Creating Your Own Probes

Probe Comments
Comments in InterMapper probe files are quite similar to those in HTML. The com-
ments may be interspersed anywhere in a probe file.

Note that HTML comments have a complicated syntax that can be simplified by fol-
lowing this rule:

Begin a comment with "<!--", end it with "-->", and do not use "--"
within the comment.

Use this rule with InterMapper as well.

Example:

<!--
 This is a probe comment.
 It spans several lines.
 It contains no double-hyphens.
-->

One-line Comments

You can also use the comment indicator "--" at the beginning of a line. The
remainder of the line is ignored.

Example:

-- This line is a comment

- 35 -

Built-in Probe Variables and Macros

Built-in Probe Variables and Macros
Here is a list of built-in variables available in custom probes and notifiers. Note
that certain variables are available only in certain contexts. The variables are lis-
ted by context.

l Command-line Probe Variables (Pg 36)
l SNMP Probe Variables (Pg 37)
l TCP Probe Variables (Pg 39)
l Command Line Notifier Variables (Pg 40)
l The Chartable macro (Pg 41)
l The Eval Macro (Pg 42)
l The Scalable10 and Scalable2 Macros (Pg 43)

Command Line Probe Variables

The following variables are available in the specified sections of Command-line
probes. (probe-type=cmd-line)

The <command-line> and <command-exit> sections

The following variables are available in <command-line> and <command-exit>
sections of command line probes

Variable Name Variable Description
${address} The network address of the device.
${devicename} The device name of the device.

Note: In some cases, the device name may resolve to the
device's IP address.

${port} The network port number that is being monitored.
${exit_code} The exit code of the command-line probe.

Note: The ${exit_code} variable is used in <command-exit>
only.

${cscript} Evaluates to the full path to the Windows cscript.exe utility; it
also automatically adds /nologo as a command-line option.

Note: This variable is only available in Windows.
${python} Evaluates to the full path to the python interpreter installed as

part of InterMapper DataCenter; it also automatically adds any
necessary command-line options for normal operation.

${community} The community string for the device.
${mapname} The name of the map containing the device being probed.
${mapid} The internal ID of the map containing the device being probed.

- 36 -

Chapter 2: Creating Your Own Probes

The <command-display> section

The following variables are available in the <command-display> section of com-
mand line probes. (probe-type=cmd-line)

Variable Name Variable Description
${devicename} The device's name taken from first line of the label.
${deviceaddress} The network address of the device.
${eval:} (Pg 42) The eval macro.
${chartable[:fmt]:-
expr} (Pg 41)

Evaluate expr and format the result as a chartable
value

${scalable2:fmt:expr}
${scalable10:fmt:expr}
(Pg 43)

Scales large numbers into smaller units for better read-
ability. The values are chartable.

${^stdout} (Pg 44) Any output written to the standard output of a com-
mand-line script. See below for additional information
about the effect of ${^stdout} on the reason string.

${nagios_output} Parses a Nagios plugin's output for display.

SNMP Probe variables

A variable name consists of letters, digits and an underscore, and must begin with
a letter. Variable names are not case-sensitive. A variable name can be referred to
in the probe as $VariableName or ${VariableName}. Use the bracketed form for
variables and parameters that have one or more spaces in the name.

The variables listed below are available in SNMP Probes. (probe-type = cus-
tomsnmp)

In the <snmp-device-display> section of a probe file, an occurrence of a variable
name is replaced with its value, rounded to the nearest integer.

For example, if a calculation variable has the value of 3.14159265, using it in the
<display-output> section results in the value of "3"; if the variable had the value
4.75 it is be displayed as "5".

This value is chartable; clicking it makes a new chart, and dragging it adds it to an
existing chart. If you need to display a non-integer value for the variable, use the
${chartable} macro described below.

- 37 -

Built-in Probe Variables and Macros

The <snmp-device-display> section
Variable Name Variable Description

${devicename} The device's name taken from first line of the label.
${deviceaddress} The network address of the device.
${imserveraddress} The network address of the InterMapper Server.
${alarmpointlist} The list of alarm points.
${eval:expr} (Pg 42) The eval macro.
${chartable[:fmt]:expr}
(Pg 41)

The chartable macro.

${scalable2:fmt:expr}
${scalable10:fmt:expr}
(Pg 43)

Scales large numbers into smaller units for better
readability. The values are chartable.

${[variablename]:legend} The variable's legend as specified in the <snmp-
device-variables> section For more information,
see SNMP Probe Variables (Pg 52).

The <snmp-device-properties> section
Variable Name Variable Description
${ifIndex} The interface index.
${ifType} The interface type.
${ifDescr} The interface description.
${ifAlias} The interface's alias

The OID column of the <snmp-device-variables> section
Variable Name Variable Description

${SpecificTrap} Trap Field: specific-trap (SNMP v1; generic-trap is
enterpriseSpecific)

${GenericTrap} Trap Field: generic-trap (SNMP v1)
${TimeStamp} Trap Field: trap timestamp (SNMP v1, v2c)
${Enterprise} Trap Field: enterprise (SNMP v1)
${CommunityString} Trap Field: community (SNMP v1, v2c)
${TrapOID} Trap Field: trap OID (SNMPv2c, v3)
${SnmpVersion} Trap Field: trap version
${SenderAddress} Trap Field: trap sender's address
${AgentAddress} Trap Field: trap agent's address (if different from

sender)
${VarbindCount} Trap Field: count of varbind variables

Note: the next three macros do not use a colon
${VarbindValue8} returns the value of the eigth Var-
bind item.

- 38 -

Chapter 2: Creating Your Own Probes

${VarbindOID[NNN]} Trap Field: NNNth varbind OID
${VarbindValue
[NNN]}

Trap Field: NNNth varbind Value

${VarbindType[NNN]} Trap Field: NNNth varbind Type

TCP Probe Variables

These variables are available in TCP probes. (probe-type = tcp-script)

The <script> section
Variable Name Variable Description
${_remote-
address}

The network address of the remote end of the connection.

${_remoteport} The network port number of the remote end of the connection.
${_localaddress} The network address of the local end of the connection.
${_localport} The network port number of the local end of the connection.
${_gmttime} The current time in RFC 822 format.
${_version} The version number of the InterMapper program.
${_line:len} The text of the last line received, truncated to the given

length.
${_idletimeout} The idle timeout for the probe in seconds.
${_string-
tomatch}

The string we attempted to match in the last EXPT or MTCH
command.

${_base64:str} Encode the given argument into base64.
${_cvs-
password:str}

Encode the given argument using the cvs password algorithm.

${_md5:str} The MD5 hash of the given argument, in hexadecimal.
${_idleline} The line number of the script where we were before the idle

handler was invoked.
${_sec-
sconnected}

The number of seconds the probe spent connected to the other
end. May be 0 if we were disconnected immediately or con-
nection failed.

${_length:str} The length of the given argument in bytes.
${_float:num} The argument "pretty-printed" as a floating point number via

printf %g.
${_
hmac:key:msg}

The HMAC-MD5 of the message, using the given key.

${_urlen-
code:str}

Encodes the specified string for use in URLs.

- 39 -

Built-in Probe Variables and Macros

The <script-output> section
Variable Name Variable Description

${devicename} The device's name taken from first line of the label.
${deviceaddress} The network address of the device.
${eval:} (Pg 42) The eval macro.
${scalable2:fmt:expr}
${scalable10:fmt:expr}
(Pg 43)

Scales large numbers into smaller units for better read-
ability. The values are chartable.

Variables passed to Command-line Notifiers

The following variables are available for passing to a command line notifier. These
values allow you to pass messages or URLs as command-line arguments in
formats that are platform-friendly.

Variable Name Variable Description
${message} The notifier's message text. (On Windows, each double-quote "

is escaped by \".)
${stripped_mes-
sage}

The notifier's message text with quotes (' and ") removed and
newlines (\r and \n) replaced by space.

${escaped_mes-
sage}

The notifier's message text escaped for url syntax (e.g. %20
for space, etc.)

${urlescape:str} Escapes a string specified in str for use in a URL. Any macros
included in str are expanded prior to escaping.

- 40 -

Chapter 2: Creating Your Own Probes

Macros

InterMapper supports several macros that can control and manipulate the way vari-
ables are displayed, as well as their use in charts.

The ${chartable} macro

Use the ${chartable} macro to evaluate expr and to format the result as a chart-
able value.

Usage

${chartable[:fmt]:expr}

In the output section of a probe file, the ${chartable: ...} macro creates an
underlined value that can be clicked to add it to a chart. The macro also controls
the field width and number of decimal places. There are two parameters:

l fmt - A formatting string that indicates the number and placement of the
digits near the decimal point, and the variable to be formatted. The format-
ting string can be either a mask composed with the '#' symbol or a quoted
printf specifier like those accepted by the sprintf (Pg 85) function.

l expr - A variable or an expression (but not a macro). InterMapper evaluates
the expression and displays the result according to the formatting string.

Examples

If the variable $pi is set to 3.14159265,

${chartable: #.## : $pi }: --> 3.14
${chartable: #.####### : $pi }: --> 3.1415927
${chartable: "%3d" : $pi }: --> 3 (with 2 lead-
ing spaces)
${chartable: "%9.7f" : $pi}: --> 3.1415927
${chartable: "%11.7f" : $pi}: --> 3.1415927 (also
with 2 leading spaces)
${chartable: #.####### : $pi*100}: --> 314.1592650
${chartable: "%9.7f" : $pi*1000}: --> 3141.5926500
${chartable: "%11.7f" : $pi*10000}: --> 31415.9265000
(no leading spaces)

- 41 -

Built-in Probe Variables and Macros

The ${eval} macro

Use the ${eval} macro to compute a value in the output of a script. It is available
in the following contexts:

l The <command-display> section of command-line probes
l The <snmp-device-display> section of SNMP probes
l The <script-output> section of TCP probes

Usage

The syntax for the ${eval} macro is as follows:

${eval:[expr]}

The expression can use any operators or functions defined in Probe Calculations
(Pg 82), allowing you to perform variable assignments, arithmetic calculations,
relational and logical comparisons, as well as use built-in functions to perform bit-
wise, rounding and mathematical operations. You can also perform operations on
strings using sprintf formatting and regular expressions.

Examples

Here are some examples that use the Eval macro:

Arithmetic: ${eval:${test} := (4-1)*(2+1)/(9/3)}
<!-- result = 3, also assigns result to ${test} -->

Modulo: ${eval:${test}%2}
<!-- result = 1, uses the ${test} variable -->

String assign: ${eval:${yes}:="Yes"} ${eval:${no}:="No"}
Numeric assign: ${eval:${test}:=5} (
Conditional: ${eval: $test==5 ? ($response := "Yes") : ($response :=
"No") }
<!-- result="Yes", because ${test} variable = 5

result also assigned to ${response} variable, output on the next
line -->
${response}

subid(): ${eval:subid("1.3.6.1.2.1.4.20.1.1.10.10.2.20", -4, 4)}
<!-- result="10.10.2.20" -->

Regular Expression: ${eval: "test123" =~ "̂ te([st]*)([0-9]*)"; "${1}
${2}"}
<!-- result = "st 123"-->

- 42 -

Chapter 2: Creating Your Own Probes

The ${variablename:legend} macro

In the <snmp-device-display> section of a probe file, the ${vari-
ablename:legend} macro is replaced with the legend field defined for that vari-
able in the <snmp-device-variables> section. For example, given this definition:

<snmp-device-variables>
ipForwDatagrams, 1.3.6.1.2.1.4.6.0, PER-SECOND, "For-

warded datagrams"
</snmp-device-variables>

The following entry in the <snmp-device-display> section shows "Forwarded data-
grams".

${ipForwDatagrams:legend}

The ${scalable10} and ${scalable2} macros

Use the ${scalable10} and ${scalable2} macros to display numbers in the appro-
priate scaled units. The values are always between 1.0 and 1000, are chartable,
and are scaled by a factor of 1000 or 1024:

l The ${scalable10} macro scales by a factor 1000 (for msec, Mbps, etc.).
l The ${scalable2} macro scales by a factor of 1024 (for KBytes, GBytes, Tera-
bytes, etc.)

Both macros display the appropriate scale. They use the same syntax as the
${chartable} macro.

Usage

${scalable10[:fmt]:expr}

${scalable2[:fmt]:expr}

Example

${scalable10: #.## : 12304 }bytes => 12.30 kbytes
${scalable10:"%3.2d" : 12304 }bytes => 12.30 kbytes

${scalable2: #.## : 12304 }bytes => 12.02 kbytes
${scalable2: "%3.2d" : 12304 }bytes => 12.02 kbytes

The following examples use the scalable10 macro.

char scale factor short for example val units example output
---- ------------ --------- ----------- ----- --------------
k * 1000 kilo 12304 bytes 12.30 kbytes
M * 1e6 Mega 3421814 bytes 3.42 Mbytes
G * 1e9 Giga 125032100300 bytes 125.03 Gbytes
T * 1e12 Tera 1.23 x 10̂ 12 bytes 1.23 Tbytes
none * 1 nothing 123 bytes 123.00 bytes
m / 1000 milli 0.02835 sec 28.35 msec

- 43 -

Built-in Probe Variables and Macros

u / 1e-6 micro 0.00047658 sec 476.58 usec
n / 1e-9 nano 0.0000000032 sec 3.20 nsec
p / 1e-12 pico 1.0 x 10̂ -10 sec 100.00 psec

The ${^stdout} variable and the Reason string

In command-line probes, a specially formatted output string is used to define vari-
ables and their values. Normally, anything else written to standard output is used
as the reason string for the probe.

If ${^stdout} exists in the command-display section of a command-line probe,
then anything written to standard output by the probe script is assigned as the
value of the ${^stdout} variable. This allows the script to programmatically
define all or part of the contents of the lower part of the status window.

Using ${^stdout} means that the reason string does not get defined. To com-
pensate, and to allow the definition of a meaningful reason string, a convention
was defined. If the specially-formatted output string mentioned above defines a
variable named reason, then its value is assigned to the reason string used in the
status window.

For example, output from the WMI Top Processes probe might look like this:

\{ProcessTime0:=100.0,CPU:=1.0,reason:="CPU utilization is below
60%"}
\B5\WMI Top Processes\0P\
 \B4\CPU Utilization:\P0\ $CPU %
 \B4\wmiprvse(3924)\P0\ $ProcessTime0 %

- 44 -

Chapter 2: Creating Your Own Probes

Using Persistent Variables
SNMP and Command-line probes can make use of persistent variables. A per-
sistent variable is one that retains its value between polls.

SNMP Probe Example

The example below demonstrates the use of persistent variables in an SNMP
probe.

<!--
SNMP probe with persistent variables (com.dartware.snmp.persistent)
Custom Probe for InterMapper (http://www.intermapper.com)
Please feel free to use this as a base for further development.
Original version 24 November 2003 by reb.
Updated 29 July 2005 -
Updated 28 Oct 2005 - include display_name so it displays properly in
InterMapper 4.4 -reb
21 Apr 2006 - Changed to test conversion of $variables to a condition
string.
20 Sep 2011 - Updated to talk about variable persistence -reb
18 Oct 2011 - Minor editing polish -reb
-->

<header>
 "type" = "custom-snmp"
 "package" = "com.dartware"
 "probe_name" = "snmp.persistent"
 "human_name" = "SNMP Persistent Variables"
 "version" = "1.1"
 "address_type" = "IP,AT"
 "port_number" = "161"
 "display_name" = "Miscellaneous/Test/SNMP Persistent Variables"
</header>

<snmp-device-properties>
 -- none required
</snmp-device-properties>

-- The <description> contains text that will be displayed in the Set
Probe window.
-- Describe the probe as much as necessary so that people will under-
stand what it does and how it works.
<description>
\GB\SNMP Probe with Persistent Variables \P\
Sometimes probes need to compare variables from previous invocations
o the current values. InterMapper SNMP probes can retain variables
from one invocation to the next.
This is done by setting a variable in this invocation to preserve the
value of the current calculation. This becomes the "old variable" in
the next invocation. The steps are:
- Read the new (current) value into a variable ("XYZ");
- Do the computations with it;
- Save that value in a separate variable ("oldXYZ");
- Re-run the probe. The oldXYZ will still contain its previous value.
\b\Example Probe\p\
This probe reads ifInOctets for a specified interface and computes
the difference between it and the previous ifInOctets. It also reads
the sysUpTime.0, and computes the time delta between the probe

- 45 -

Using Persistent Variables

executions. From these values, the probe computes the traffic rate.
For comparison, the probe also looks at ifInOctets using Inter-
Mapper's standard PER-SECOND calculations.
</description>

-- Parameters are user-settable values that the probe uses for its
comparisons.
-- Specify the default values here. The customer can change them and
they will be retained for each device.
<parameters>
"Interface" = "24"
</parameters>

-- SNMP values to be retrieved from the device, and
-- Specify the variable name, its OID, a format (usually DEFAULT) and
a short description.
-- CALCULATION variables are computed from other values already
retrieved from the device.
<snmp-device-variables>
actInOctets, ifInOctets.$Interface, PER-SECOND, "actual inOctets"
inOctets, ifInOctets.$Interface, INTEGER, "current value"
deltaBytes, $inOctets-$oldInOctets, CALCULATION, ""
curSysUpTime, sysUpTime.0, INTEGER, "current sysuptime"
deltaTime, $curSysUptime - $oldSysUpTime, CALCULATION, ""
-- Now update the oldXXXX variables with current values for next time
-- NB: prevInOctets is only needed for display - it is not used in
-- the calculations above
prevInOctets, $oldInOctets, CALCULATION, "from last time"
oldInOctets, $inOctets, CALCULATION, "old inOctets for next time"
oldSysUpTime, $curSysUpTime, CALCULATION, "old sysuptime for next
time"
</snmp-device-variables>

-- Specify rules for setting the device into Alarm or Warning state
<snmp-device-thresholds>
</snmp-device-thresholds>

-- The <snmp-device-display> section specifies the text that will be
appended
-- to the device's Status Window.
<snmp-device-display>
\B5\Persistent SNMP Variables on Interface=$interface\0P\
\4\Old Octets:\0\ $prevInOctets \3g\bytes\0mp\
\4\Cur Octets:\0\ $inOctets \3g\bytes\0mp\
\4\Delta's:\0\ $deltaBytes \3g\bytes\0mp\ in $deltaTime \3g\centi-
seconds \0mp\
\4\Computed Rate:\0\ ${eval:sprintf("%d",($deltaBytes) / $deltaTime
* 100) } \3g\bytes/sec\0mp\
\4\Actual Rate:\0\ ${scalable10: #.### : $actInOctets} \3g\-
bytes/sec, using built-in PER-SECOND type\0mp\
</snmp-device-display>

- 46 -

Chapter 2: Creating Your Own Probes

Command Line Probe Example

The example below demonstrates the use of persistent variables in a command-
line probe.

<!--
Command-line Return (com.dartware.tool.persistent.txt)
Copyright© HelpSystems, LLC. All rights reserved.

Test of persistent variables by round-tripping values: pass them into
script, get results back, post to status window.
20 Sep 2011 -reb
18 Oct 2011 Minor editing -reb
-->

<header>
 type = "cmd-line"
 package = "com.dartware"
 probe_name = "tool.persistent"
 human_name = "Command Line Persistent Variables"
 version = "1.1"
 address_type = "IP"
 display_name = "Miscellaneous/Test/Command Line Persistent Vari-
ables"
</header>

<description>
\GB\Command Line Persistent Variables\p\
This is an example of passing persistent variables into a command-
line probe. The attached Python script takes the variables, updates
them, and returns them to be used for the next iteration.
The script below processes two variables: \b\$SearchString\p\ and
\b\$numericParam\p\. The script appends an "a" to $SearchString, and
adds 1 to the $numericParam and returns both values. (This is a use-
less script, created just to demonstrate use of persistent vari-
ables.)
Both variables are uninitialized when the probe is executed the very
first time. The script can detect this startup condition because an
uninitialized variable is passed to the script as the variable's
name.
For example, the variable named $SearchString will be passed as a
string - "$SearchString". The script can detect this value - it's the
same name that will be used to return the new result for the variable
- and treat the variable as uninitialized, by assigning a sensible
default value.
The Python script tests the passed-in values to see if they match the
expected name and initializes them accordingly.
\i\Note:\p\ This device's address should be set to \i\localhost\p\.
\i\Note:\p\ These variables could be initialized by setting them in
the <parameter> section, but this exposes a lot of the script's
internal variables to the customer: this is generally not a good
design.
</description>

<parameters>
-- no human-editable parameters
</parameters>

<command-line>
-- Unix/OSX: Empty path forces the InterMapper Settings:Tools

- 47 -

Using Persistent Variables

directory
path=""
cmd="${PYTHON} persistent.py $numericParam"
arg=''
input="${SearchString}"

</command-line>

<command-exit>
-- These are the exit codes used by Nagios plugins
 down: ${EXIT_CODE}=4
 critical: ${EXIT_CODE}=3
 alarm: ${EXIT_CODE}=2
 warn: ${EXIT_CODE}=1
 okay: ${EXIT_CODE}=0
</command-exit>

<command-display>
\b5\ Current value of SearchString and numericParam\p0\
 Search String: $SearchString
 Number: $numericParam
</command-display>

<tool:persistent.py>
#!/usr/local/imdc/core/python/bin/imdc -OO
The line above is required to run as an IMDC plugin
persistent.py

Round-trip the passed-in variables, update them, and return them
20 Sep 2011 -reb
import os
import sys
import getopt

try:
 opts, args = getopt.getopt(sys.argv[1:], "")

except getopt.GetoptError, err:
 searchString = "getopt error %d" % (err)

if (args[0] == "$numericParam"): # check to see if the argument is
the name of the parameter
 number = 0 # if so, set it to a good initial value
else:
 number = int(args[0]) # otherwise, convert the string to an
integer

Read the stdin file which contains the search String
f = sys.stdin # open stdin
searchString = f.readline().strip() # get the line & remove leading
& trailing whitespace

if (searchString == "$SearchString"): # check to see if the value is
the name of the parameter
 searchString = "" # if so, set it to a good initial value

retcode=0
searchString = searchString + "a" # add another "a" to the end of
the string

- 48 -

Chapter 2: Creating Your Own Probes

number = number+1 # increment the number as well
retstring = "Hunky Dory!"

print "\{ $SearchString := '%s', $numericParam := '%d' } %s" %
(searchString, number, retstring)
sys.exit(retcode)
</tool>

- 49 -

SNMP Probes

type="custom-snmp"

Using SNMP probes, you can monitor certain MIB variables that aren't tested by
InterMapper's built-in probes. These MIB variables might include the CPU util-
ization of a router, temperature inside the equipment, switch closures, etc.

Like other probes, SNMP probes are invoked and return the status and condition
string for the device being tested. Here's a summary of the operational flow of an
SNMP probe:

1. InterMapper polls the device for the values (called probe variables) specified
in the probe file as well as the device's built-in MIB variables (usually byte
and packet rates for interfaces).

2. InterMapper also polls each interface for probe variables as needed.
3. InterMapper then evaluates a series of expressions in the probe file, com-

paring the probe variables to thresholds.
4. If a comparison is triggered (generally, if the probe variable is above or

below the given threshold), then InterMapper sets the device status as spe-
cified in the probe, if it is "worse" than the devices current status.

5. When the user clicks and holds on a device, InterMapper processes the rel-
evant display section to produce the text for the Status window.

Common Sections of an SNMP probe

SNMP probes follow the same general format as other probe files.

l The <header>, (Pg 12) section of a command-line probe specifies the probe
type, name, and a number of other properties fundamental to the operation of
the probe.

l The <description> (Pg 17) section specifies the help text that appears in
the Set Probe window. Format the description using IMML, InterMapper's
Markup language.

l The <parameters> (Pg 18) section defines the fields presented to the user
in the Set Probe window.

- 50 -

Chapter 3

Chapter 3: SNMP Probes

Sections Specific to SNMP Probes

<header>
 type = "custom-snmp"
</header>

Note: See SNMP Trap Probes for information on creating probes that handle SNMP
traps.

Each SNMP probe also has:

l An <snmp-device-variables> section (Pg 52) - Specifies which MIB vari-
ables to collect from the device

l An <snmp-device-thresholds> section (Pg 59) - Specifies how those vari-
ables are to be tested against thresholds to determine the device's status

l An <snmp-device-display> section (Pg 69) - Specifies what information
about the device and its links should be displayed in the Status window

l The <snmp-device-properties> section (Pg 61) - Specifies certain aspects
of the SNMP queries sent to the device.

l The <snmp-device-variables-ondemand> Section - Many devices store
information in SNMP tables. InterMapper can retrieve this tabular information
and display the data "on demand".

- 51 -

The <snmp-device-variables> Section

The <snmp-device-variables> Section
Use the <snmp-device-variables> section to specify the values you want to
retrieve using a particular SNMP OID. These values, called probe variables, can
then be compared to thresholds to create alarms, warnings, etc.

Each line of the <snmp-device-variables> section defines a particular variable to
be retrieved. The definition is composed of four comma-separated attributes:

[Variable-name], [OID], [Type], [Chart-legend]

Sample <snmp-device-variables> Section

<snmp-device-variables>
 --Variable-name OID --- TYPE ---- CHART LEGEND ------
 ipForwDatagrams, 1.3.6.1.2.1.4.6.0, PER-SECOND, "Forwarded data-
grams"
 ipInHdrErrors, 1.3.6.1.2.1.4.4.0, PER-MINUTE, "IP received header
err"
 tcpCurrEstab, 1.3.6.1.2.1.6.9.0, DEFAULT, "Number of TCP
conn's"
 sysDescr, 1.3.6.1.2.1.1.1.0, DEFAULT
</snmp-device-variables>

Note: The OIDs above have a trailing ".0" to specify their full OID.

Status Window Text - The <snmp-device-display> Section

Use the <snmp-device-display> to control the way information gathered during
polling appears in the Status window. Create a <snmp-device-display> section
with the items to be displayed. For more information, see Customized Status Win-
dows (Pg 32).

InterMapper retrieves MIB variables from a device and then tests them against
thresholds. The <snmp-device-variables> section defines the OIDs of MIB vari-
ables that are to be retrieved. These values are called probe variables and can
then be compared to thresholds to create alarms, warnings, etc.

Each line of the <snmp-device-variables> section defines a particular variable to
be retrieved. The definition is composed of four comma-separated attributes:

[VariableName], [OID], [Type], [Chart Legend]

The definitions of these attributes are:

l VariableName is the name used to represent the particular MIB value in this
probe. For more information, see the Built-in Variable Reference (Pg 36)
topic.

l OID is the SNMP Object ID for the particular probe variable. The OID can be
expressed as a string of dotted numbers or as an OID name, if the cor-

- 52 -

Chapter 3: SNMP Probes

responding MIB has been imported into InterMapper. An OID can also be an
expression, if the type is "CALCULATION" (see note below).

l Type- specifies how InterMapper displays a value. The type may be one of
the following:

n Default - InterMapper deduces an applicable type from the SNMP type
of the variable and displays it according to the "Format for DEFAULT
types" table below.

n Integer - values are coerced to a numeric value. If you have a string
value returned "78Fred", the value as INTEGER is 78.

n Integer64 - values are coerced to a numeric value (up to 64-bits). If
you have a string value returned "78Fred", the value as INTEGER is 78.

n Hexadecimal - If the value is a number, it is displayed as a hex num-
ber, preceded by "0x" (0xFFFFFFFF). Otherwise, it is represented as a
series of hex characters separated by spaces (44 61 72 77 69 6E 20 52
69 63 68 61 72). This type is not chartable.

n Hexnumber - converts a string of hexadecimal digits into a number.
For example, a string value of "FE" is converted to the number 254.

n Total-value - displays the actual value of a counter or gauge, not a
computed rate value. This is always an unsigned number.

n Total64-value - displays the actual value of a counter or gauge, not a
computed rate value. This is always an unsigned number (up to 64-
bits).

n Per-second and Per-minute - force InterMapper to compute a rate
for the particular variable by computing the difference between two suc-
cessive samples and dividing by the elapsed time.

n String - sets a variable to the text string that corresponds to this OID's
enumerated type, as defined in the MIB. (see Enumerated Values
below) This type is not chartable.

n Calculation - sets the variable to the result of the calculation shown in
the OID field.

n TrapVariable - sets a variable based on the value received from an
SNMP trap. A complete discussion of Trap Variables is available in
About Custom SNMP Trap Probes (Pg 98)

n IPADDRESS - InterMapper displays a 4-byte octet string as an IPv4
address and a 16-byte octet string as an IPv6 address.

Format for DEFAULT types - All SNMP variables have an inherent
type (one of the choices in the Type column below.) If a probe variable
is declared as DEFAULT, InterMapper displays it according to this table:

Type Displayed as:
Counter32, Counter64 Per-Second
Unsigned32 (Gauge) Total-Value
Integer Integer
OctetString String (if 1st digit printable)

Hexadecimal (if 1st digit not print-
able)

- 53 -

The <snmp-device-variables> Section

Object ID String
IPAddress String
TimeTicks String

l Chart-legend is an optional field that provides a text label to be placed on
any strip charts that incorporate this variable. Chart legends may contain
embedded variable names in the form $VariableName.

Notes:

l Calculation variables have a slightly different form, as described below.
l See Probe Calculations (Pg 82) for a description of the functions and oper-
ators that are available in expressions.

l See Using Persistent Variables (Pg 45) for information on how to save vari-
able values between device polls.

l A scalar's OID must end in ".0" according to the SNMP specifications. See
SNMP OIDs (Pg 92) for a description of allowable formats for OIDs.

l See On-Demand SNMP Tables (Pg 62) for a description of how your probe can
display tabular information from a MIB.

l When InterMapper retrieves a value, by default it issues an SNMP Get-Next-
Request for the previous OID, unless the pdutype is set to "get-request" (see
Probe Properties (Pg 61).)

- 54 -

Chapter 3: SNMP Probes

Here is a sample <snmp-device-variables> section.

<snmp-device-variables>
--Variable-name OID --- TYPE ---- CHART LEGEND ----

--
sysDescr, 1.3.6.1.2.1.1.1.0, DEFAULT,
sysLocation, sysLocation.0, DEFAULT,
ipInHdrErrors, 1.3.6.1.2.1.4.4.0, PER-MINUTE, "IP received

header err"
ifInOctets1, ifInOctets.1, DEFAULT, "bytes/sec

received on interface 1"
ifInOctets2, ifInOctets.$if, DEFAULT, "bytes/sec

received on interface ${if}"
TempF, ($TempC * 1.8)+32, CALCULATION, "Degrees F"

</snmp-device-variables>

l $sysDescr is set by retrieving the OID 1.3.6.1.2.1.1.1.0 and using that
value. It will be displayed as the default format, that is a string.

l $sysLocation is set by querying the OID sysLocation.0 (which is equivalent
to the numeric 1.3.6.1.2.1.1.6.0). It, too, will be displayed as a string. Note
that you can use a human-readable SNMP variable name instead of its
numeric OID.

l $ipInHdrErrors is set by querying the OID 1.3.6.1.2.1.4.4.0, but will be dis-
played as a number of errors *per minute*.

l $ifInOctets1 is set by querying the OID ifInOctets.1
(1.3.6.1.2.1.2.2.1.10.1). Note that the final digit is "1", indicating that it is
reading row 1 of the values in the table. It will be displayed as a number of
octets (byte) per second, since InterMapper's default display format for a
counter is "per-second".

The next two examples are controlled by variables that have been set elsewhere,
perhaps set manually in the <parameters> section of the probe.

l $ifInOctets2 is set by first evaluating the variable $if, then substituting that
value into the OID. If $if were set to "1", then $ifInOctets would retrieve
ifInOctets.1, and would result in the same value as $ifInOctets1. Note
that $if is also used in the variable's legend.

l $TempF is a "calculation" variable. It is set by evaluating the expression
($TempC * 1.8)+32 where $TempC was set elsewhere.

SNMP Scalar and Table Values

SNMP has two kinds of values: table and scalar values.

l A table value is an element of a table: the variable name (e.g. ifInOctets)
is the name of a column; the final digit (or digits) is the index for the ele-
ment; it defines the table row containing the element. Thus ifInOctets.1 is
the full OID for the value in the first row of the ifInOctets column.

l A scalar value is "one of a kind" - there is only a single value, so you must
specify a ".0" after the name to indicate that it's the only "row". For example,
sysDescr can be represented as 1.3.6.1.2.1.1.1.0 or sysDescr.0. Both
OIDs end in ".0".

- 55 -

The <snmp-device-variables> Section

Using Variables in OIDs and Legends

You can use SNMP variables in OIDs and legends. The example below uses $if as
the OID index, and displays it in the legend.

ifInOctets2, ifInOctets.$if, DEFAULT, "bytes/sec
received on interface ${if}"

Calculation Variables

A Calculation type variable receives the result of an arithmetic expression. After
all variables have been polled, InterMapper calculates the expression, and sets the
value of its variable to the result. In the example above:

TempF, ($TempC * 1.8)+32, CALCULATION, "Degrees F"

The variable "TempF" is set to the value of the expression (10 * sin(0.01 *
time()). This gives a sine wave that makes an attractive chartable value. Use
"$SineValue" to refer to the variable elsewhere in the probe.

Built-in Variables

InterMapper provides a number of built-in variables, detailed in the Built-in Vari-
able Reference (Pg 36) topic.

Macros

InterMapper also supports several macros that can help control the output of vari-
ables, as well as their use in charts.

l ${chartable[:fmt]: expr}
l ${variablename:legend}
l ${eval: expr}
l ${scalable10} and ${scalable2}

These are detailed in the Built-in Variable Reference topic's Macros section (Pg
41).

Enumerated Values

Many MIBs use an integer to represent one of several states. For example,
ifOperStatus (1.3.6.1.2.1.2.2.1.8.x) is defined in MIB-II as:

INTEGER { up(1), down(2), testing(3) }

This means that the value 1 represents the "up" condition; 2 represents "down";
and 3 represents "testing".

The type you use when you define the variable affects the result:

l If you define a variable to retrieve this value as INTEGER or DEFAULT, the
probe displays the value as a number.

- 56 -

Chapter 3: SNMP Probes

l If you define it as a STRING, the probe uses the MIB to find the string rep-
resentation, and sets the variable (in this case) to the value "up", "down", or
"testing".

-- If the MIB has been imported, the string is dis-
played in the output if the variable is declared as
STRING.

 variable1, ifOperStatus.3, STRING, ""

-- The integer value is always used in the output if
the variable is declared as DEFAULT or INTEGER.

 variable2, ifOperStatus.3, DEFAULT, ""
 variable3, ifOperStatus.3, INTEGER, ""

If the OID or MIB name isn't defined (because the corresponding MIB hasn't been
imported or because of a typo), the probe displays the integer value.

Alternatives to Enumerated Values

If no MIB file is available, you can create a calculation variable to select a string
based on the numeric value returned.

Example: Two choices

-- If you have two choices, use a conditional expression:
 xxxx ? yyyy : zzzz

-- It can be read as:
if xxxx is true then

return yyyy
otherwise

return zzzz

-- The variable looks like this:
 xxxxStr, ($xxxx == 0 ? "yyyy" : "zzzz"), CALCULATION, "replacement
string for $xxxx"

Example: Three or more choices

-- Chain the expression:
aaaa ? bbbb : cccc ? dddd : eeee ? ffff : gggg

-- Can be read as:
if aaaa is true then

return bbbb
else if cccc is true

return dddd
else if eeee is true

return ffff
else return gggg

-- Generally, aaaa, cccc, and eeee test to see if a single variable
is equal to 1, 2, 3, etc.

- 57 -

The <snmp-device-variables> Section

-- The calculation variable then looks like this:
 aaaaStr, ($aaaa==0 ? "bbbb" : $aaaa==1 ? "dddd" : $aaaa==2 ?
"ffff" : "gggg"), CALCULATION, "replacement string for aaaa"

- 58 -

Chapter 3: SNMP Probes

The <snmp-device-thresholds> Section
Use the <snmp-device-thresholds> section to specify the comparisons that
should be made between probe variables and other values.

Each line in the threshold section contains a status, a comparison, and an optional
condition string for probe variables. If the comparison is triggered, (if the expres-
sion comparing the probe variable to a constant or other variable is true) then the
device is changed to the corresponding status (if that exceeds its current status.)

A threshold can be one of the following (they are case-sensitive), and should be
presented in this order:

l down
l critical
l alarm
l warning
l okay

Sample <snmp-device-threshold> Section

<snmp-device-thresholds>
 down: ${ifOperStatus} = 0 "Device Down"
 critical: ${ipInHdrErrors} > 15 "ipInHdrErrors critical"

alarm: ${ipForwDatagrams} > 10 "ipForwarded datagrams too
high"

alarm: ${tcpCurrEstab} >= 1
alarm: ${ipInHdrErrors} > 10 "ipInHdrErrors too high"

warning: ${ipForwDatagrams} > 5
warning: ${ipForwDatagrams} <= 2
warning: ${ipInHdrErrors} > 5
okay: 1 = 1 "Everything is OK"

</snmp-device-threshold>

Creating Comparisons

As implied above, comparisons are evaluated in order from top to bottom until a
comparison is triggered (result is true). It is important to put the Critical com-
parisons first, followed by Alarm, Warning, and OK.

At that point, if the associated status is more severe than the device's current
status, the device now uses its status and condition. No further comparisons are
made once one has triggered.

When a comparison is triggered, it is written to the log file as well as being added
to the bottom of the device's Status window. If the condition string is present, it is
displayed in addition to the comparison string.

- 59 -

The <snmp-device-thresholds> Section

Numeric Comparisons

The following numeric comparison operators are legal:

>, >=, <, <=, =, and !=.

String Matches

By default, InterMapper performs numeric comparisons.

To compare values as strings:

l Enclose one or both of the operands in double-quotes ("). For example, the
comparison

warning: ${sysContact} != "Fred Flintstone"

performs a string comparison because the name is enclosed in quotes.
l Use the =~ and !~ operators to provide partial string matches. They perform
"contains" and "doesn't contain" comparisons, respectively.

- 60 -

Chapter 3: SNMP Probes

The <snmp-device-properties> Section
The <snmp-device-properties> section specifies certain aspects of the SNMP
queries sent to the device. Like other sections, it is closed with a </snmp-device-
properties> tag. For example:

<snmp-device-properties>
 nomib2 = "true"
 pdutype = "get-request"
 apcups = "false"
 maxvars = "10"
 interface_numbered = ($ifIndex == 2 or $ifDescr =~ "en2")
 interface_visible = ($ifIndex == 2 or $ifDescr =~ "en2")
</snmp-device-properties>

The properties that may be set include:

l nomib2="true" -- InterMapper does not query the sysUptime MIB-2 vari-
able.

l pdutype="get-request" -- InterMapper uses SNMP Get-Request, instead of
Get-Next-Request queries.

l apcups="false" -- If apcups is false, InterMapper will not query the APC-
UPS MIB even for devices that auto-detect as one.

l maxvars="10" -- maxvars controls the maximum number of variables to
put in each SNMP request. If a custom probe requires more variables than
maxvars, InterMapper sends multiple queries containing up to maxvars vari-
ables.

l interface_visible = <expression> - specifies a "filter expression" for use
in determining which interfaces are made visible. By default, InterMapper
makes the numbered interfaces visible. Setting this property allows you to
make certain unnumbered interfaces visible if they match the expression that
can use $ifIndex, $ifDescr, $ifType, or $ifAlias variables.
Note: This property does not allow you to make numbered interfaces hidden.

l interface_numbered = <expression> - specifies a "search expression"
for use in determining which interface is made numbered. By default, the
ipAddrTable specifies which interface is numbered. This property allows the
probe file to override that choice.

- 61 -

The <snmp-device-variables-ondemand> Section

The <snmp-device-variables-ondemand> Section
Many devices store information in SNMP tables. InterMapper can retrieve this tab-
ular information and display the data "on demand", that is, when requested by user
action. When you view a table, InterMapper retrieves the information from the
device immediately and displays it in a separate window. The information in an on-
demand window is not part of the regular polling cycle, nor is it refreshed until you
specifically request it. The image below shows a sample on-demand window.

On-demand tables are useful for digging down into a device when you suspect
there might be a problem. You can create on-demand tables to view a routing
table, ARP table, or other statistics that that are kept within tables.

Background on SNMP Tables

The SNMP protocol provides access to two types of variables:

l Scalar variables contain single values such as strings (that could represent
system description or firmware version), integers (number of interfaces),
counters (number of errors), gauges (CPU temperature and memory util-
ization), etc.

l Table variables hold information about similar entities within a device.
These entities could be interfaces in a router or switch, users associated with
a wireless access point, virtual machines in a server, etc. Each entity's inform-
ation is represented by a row, whose columns are variables (which are them-
selves scalars) that hold information about the entity. A row is often called an
"entry" in a MIB; each column is specified by an OID prefix plus a unique
index that specifies a particular row.

- 62 -

Chapter 3: SNMP Probes

For example, MIB-II defines a table named "ifTable" that gives information about a
device's interfaces. An outline of ifTable looks like this:

+ ifTable
+ ifEntry [ifIndex]
- ifIndex "Interface Index"
- ifDescr "Description"
- ifType "Link type"
- ifSpeed "Link speed"
- ifPhysAddress "MAC Address"
- ifOperStatus "Operational status"
- ifAdminStatus "Administrative status"
- ... and so on...

Here's how to interpret this information. The ifTable is composed of a sequence of
ifEntrys which form the rows of the table. Each row (each ifEntry) has a number of
variables: we show only some of them, starting with ifIndex and ending with ifAd-
minStatus. These variables become the columns of each row.

The image above shows the window of an on-demand table for ifTable. The
columns match the variables mentioned above. The window also shows the num-
ber of rows in the table (at lower left), the time the data was retrieved, and the
Refresh button to retrieve current data.

Table Indexes

Each row of an SNMP table has a unique index. The index for ifTable is the "inter-
face index", that loosely represents the port number of the interface. Individual val-
ues are represented by the column name followed by its index. For example:

ifSpeed.3 (or the OID 1.3.6.1.2.1.2.2.1.3)

would represent the ifSpeed for row 3 of the table. The "column name" is ifSpeed
(1.3.6.1.2.1.2.2.1), and the index is the ".3".

- 63 -

The <snmp-device-variables-ondemand> Section

Table Syntax

An on-demand table in a custom SNMP probe mirrors the outline above. Its defin-
ition consists of a sequence of lines of comma-separated values defining the vari-
ables of one or more tables:

<snmp-device-variables-ondemand>
 ifTable, .1, TABLE, "Inform-
ation about the physical interfaces"
 ifTable/ifIndex, 1.3.6.1.2.1.2.2.1.1, DEFAULT, "Interface
Index" <!-- using OID for column -->
 ifTable/ifDescr, 1.3.6.1.2.1.2.2.1.2, DEFAULT, "Descrip-
tion" <!-- using OID for column -->
 ifTable/ifType, 1.3.6.1.2.1.2.2.1.3, STRING, "Link Type
" <!-- using OID for column -->
 ifTable/ifSpeed, 1.3.6.1.2.1.2.2.1.5, DEFAULT, "Link
Speed" <!-- using OID for column -->
 ifTable/ifPhysAddress, ifPhysAddress, HEXADECIMAL, "MAC
Address" <!-- using column name from MIB -->
 ifTable/ifOperStatus, ifOperStatus, STRING, "Opn'l"

<!-- using column name from MIB -->
 ifTable/ifAdminStatus, ifAdminStatus, DEFAULT, "Admin"

<!-- using column name from MIB -->
</snmp-device-variables-ondemand>

This example shows an on-demand table for ifTable.

Note: The <snmp-device-variables-ondemand> section must contain fewer than
50 queries.

The remainder of the table is composed of comma-separated lines describing each
variable.

l The first line creates a table. The first field is the table's name that can be
used to represent the table elsewhere in the probe file. The second field
should be ".1". The third field ("TABLE") indicates that this is a new table. The
fourth field is a human-readable description that is displayed in the on-
demand window.

l The remaining lines follow the format of <snmp-device-variables>. See
their page for more information. The names in the first column contain the
table name, a "/", and the name for the column.

l The next four lines define variables (ifIndex, ifDescr, ifType and ifSpeed) that
are to be columns of the table. They are defined using the numeric OID that
represents the column for those values.

l The final three lines define ifPhysAddress, ifOperStatus, and ifAdminStatus.
They are defined using the name of the column from the MIB. This is entirely
equivalent to writing out the full numeric OID.

The tables described here are available as the SNMP/Table Viewerprobe that's
built into InterMapper. In addition, the probe file is available on the Table Viewer
page of this manual.

- 64 -

Chapter 3: SNMP Probes

Augmenting Tables

Certain MIB's define a table that "augments" another table. This simply means that
the augmenting table uses the same index variables as another table. Since the
index variables are the same, you can visualize this as adding columns to an exist-
ing table.

For example, in the IF-MIB, the ifXTable augments ifTable, providing a number of
useful additions.

InterMapper's table syntax easily supports mixing columns from one or more
tables that share the same table definition:

<snmp-device-variables-ondemand>
ifXTable, .1, TABLE, "Exten-

ded ifTable"
ifXTable/ifIndex, IF-MIB::ifIndex, DEFAULT, "Inter-

face index"
ifXTable/ifDescr, IF-MIB::ifDescr, DEFAULT,

"Description"
ifXTable/ifName, IF-MIB::ifName, DEFAULT, "Name"
<!-- ifXTable -->
ifXTable/ifAlias, IF-MIB::ifAlias, DEFAULT, "Alias"
<!-- ifXTable -->
ifXTable/ifType, IF-MIB::ifType, STRING, "Link

Type "
ifXTable/ifSpeed, IF-MIB::ifSpeed, DEFAULT, "Link

Speed"
ifXTable/ifHighSpeed, IF-MIB::ifHighSpeed, DEFAULT,

"Mbit/sec"
ifXTable/ifPhysAddress, IF-MIB::ifPhysAddress, HEXADECIMAL, "MAC

Address "
ifXTable/ifOperStatus, IF-MIB::ifOperStatus, STRING, "Opn'l"
ifXTable/ifAdminStatus, IF-MIB::ifAdminStatus, DEFAULT, "Admin"

</snmp-device-variables-ondemand>

In the example, ifName and ifAlias come from the ifXTable while the others are
part of ifTable. Yet they all can be shown in the same on-demand window.

- 65 -

The <snmp-device-variables-ondemand> Section

Index-Derived Variables

Certain SNMP equipment uses the value of one of more columns as part of the row
index. In many cases, the column itself is not accessible, and thus cannot be quer-
ied directly.

InterMapper has a facility that allows you to derive the values of these columns
from the index itself, even from columns that are not accessible. The notation oid
[a:b] means to fetch the OID oid and compute the value from the index:

oid[a:b] - remove the subid's for "oid" then start with the a'th
subid and collect b subids.
oid[a:] - remove the subid's for "oid" then start with the a'th
subid and collect the remaining subids

Here is an example of retrieving the four columns of ipNetToMediaTable. Note that
the table has been given the name "ARPTable", although the OID is ipNetToMe-
diaEntry.

<snmp-device-variables-ondemand>
ARPTable, .1, TABLE,
"Map from IP addresses to physical addresses."
ARPTable/ipNetToMediaIfIndex, ipNetToMediaType[0:1],

DEFAULT, "Interface index"
ARPTable/ipNetToMediaNetAddress, ipNetToMediaType[1:4],

DEFAULT, "IP Address"
ARPTable/ipNetToMediaPhysAddress, ipNetToMediaPhysAddress,

HEXADECIMAL,"MAC Address"
ARPTable/ipNetToMediaType, ipNetToMediaType, STRING,
"Type"

</snmp-device-variables-ondemand>

The ipNetToMediaTable is defined to use two index values:

l ipNetToMediaIndex (the row number of the interface)
l ipNetToMediaNetAddress (the IP address of the device)

The full OID used to retrieve a value from the table is its prefix (for example,
ipNetToMediaType is 1.3.6.1.2.1.4.22.1.4) followed by a single subid for
ipNetToMediaIndex followed by the four subid's of ipNetToMediaNetAddress.

When InterMapper displays the table, it retrieves ipNetToMediaType, removes the
prefix, then starts at position 0 of the remainder and uses one subid for the
ipNetToMediaIfIndex, and then starts at position 1 and takes the next four
subid's for the value of ipNetToMediaNetAddress.

- 66 -

Chapter 3: SNMP Probes

Calculations within On-demand Tables

InterMapper provides the ability to have calculations in on-demand tables. This is
useful for making calculations from values within the same row of the table. The
calculations may also use constant values as well as parameters to the probe. In
the example below:

l 1) declares the column "ifIndex"
l 2) calculates the value of (column "ifIndex" plus 1) times 2
l 3) uses the previous column to get the original ifIndex back
l 4) and 5) display the current value of ifInOctets and ifOutOctets
l 6) the calculated ratio between these two columns
l 7) and 8) show a circular reference which fails gracefully - Circular1 and Cir-
cular2 refer to each other and simply display "-" as a value.

<snmp-device-variables-ondemand>
 ifTableTest, .1, TABLE
 ifTableTest/ifIndex, IF-MIB::ifIndex, DEFAULT

<!-- #1 -->
 ifTableTest/ifIndexPlus1Times2, ($ifIndex + 1)*2,
CALCULATION <!-- #2 -->
 ifTableTest/ifIndexBack, $ifIndexPlus1Times2/2-1,
CALCULATION <!-- #3 -->
 ifTableTest/TInOctets, IF-MIB::ifInOctets, DEFAULT

<!-- #4 -->
 ifTableTest/TOutOctets, IF-MIB::ifOutOctets, DEFAULT

<!-- #5 -->
 ifTableTest/ifRatio, $TInOctets/$TOutOctets,
CALCULATION <!-- #6 -->
 ifTableTest/Circular1, $Circular2 - 1,
CALCULATION <!-- #7 -->
 ifTableTest/Circular2, $Circular1 + 1,
CALCULATION <!-- #8 -->
</snmp-device-variables-ondemand>

- 67 -

The <snmp-device-variables-ondemand> Section

Displaying On-demand Tables

After you define a TABLE variable in the "ondemand" section of the probe, you can
specify that status window should display a link to the ondemand window. To do
this, add the variable name to the <snmp-device-display> section of the probe:

<snmp-device-display>
...
$ARPTable

</snmp-device-display>

The status window displays the table name as a hyperlink. Clicking on the hyper-
link opens the on-demand table window shown at the top of the page.

If you want to replace the default table name displayed with your own text, you
can specify the "alternate text" in the expanded variable form:

<snmp-device-display>
...
${ARPTable:View the entire ARP Table}

</snmp-device-display>

Limitations

l On-demand variables must be in table form with a "/" in the variable name.
l You cannot query tables in the regular <snmp-device-variables> section.
l You cannot reference on-demand tables defined in other probes.
l You cannot specify non-accessible MIB variables by their symbolic OID.
Instead, use the "derived values" syntax to determine the correct index-
derived OID expression.

l You must declare no more than 50 variables in the <snmp-device-variables-
ondemand> section or the query will not work.

- 68 -

Chapter 3: SNMP Probes

The <snmp-device-display> Section
Controlling the Status window in SNMP Probes with <snmp-device-dis-
play>

Use the optional <snmp-device-display> section to describe the text that appears
in a custom SNMP probe's Status window. Probe variables are replaced with their
values in the Status window's text.

The default font for the Status window's text is a mono-spaced font, so alignment
of text is straightforward. You can change the appearance of the text in the Status
window using IMML, InterMapper's Markup Language.

Here is a sample <snmp-device-display> section. Note that the variables are
replaced with the values retrieved from the device, and that formatting is con-
trolled by IMML.

<snmp-device-display>
\B5\Custom SNMP Probe\0P\
\4\ipForwDatagrams:\0\ ${ipForwDatagrams} datagrams/sec
\4\ipInHdrErrors:\0\ ${ipInHdrErrors} errors/minute
\4\tcpCurrEstab:\0\ ${tcpCurrEstab} connections

</snmp-device-display>

Using Disclosure Widgets

A disclosure widget, also called a disclosure control, is a user interface element
that allows the user to expand or collapse text in a window.

The basic syntax of a disclosure control area is as follows:

\#hide:[disclosureblock name]\ Title for Disclosure Block \#begin:
[disclosureblock name]\
First line of disclosureblock
Second line of disclosureblock
Third line of disclosureblock
Fourth line of disclosureblock

\#end:[disclosureblock name]\

Use the #hide and #show to specify the default state of the block.

You can also nest disclosure controls, as demonstrated below.

<!--
Testing Disclosure Widgets(com.dartware.reb.expander.txt)
Probe for InterMapper (http://www.intermapper.com)
Please feel free to use this as a base for further development.

Original version - 6 Aug 2010 -reb
-->

<header>
"type" = "custom-snmp"
"package" = "com.dartware"

- 69 -

Using Disclosure Widgets

"probe_name" = "reb.expander_control"
"human_name" = "Test Expander Control"
"version" = "1.0"
"address_type" = "IP,AT"
"port_number" = "161"
display_name = "Miscellaneous/Test/Test Expander Controls"

</header>

<snmp-device-properties>
-- none required

</snmp-device-properties>

<description>
\GB\Testing Disclosure Widgets\P\

This probes is for testing out the disclosure widget ("expander con-
trol") feature
in Status Windows.

</description>

<parameters>
-- none

</parameters>

<snmp-device-variables>
-- none

</snmp-device-variables>

<snmp-device-thresholds>
-- none

</snmp-device-thresholds>

<snmp-device-display>
-- The <snmp-device-display> section specifies the text that will

be appended
-- to the device's Staus Window.
\B5\Displaying Expander_ Controls\0P\

\#hide:expander_1\ Title for Expander_1 (initially hidden) \#be-
gin:expander_1\
First line of Expander_1
Second line of Expander_1
Third line of Expander_1
Fourth line of Expander_1
\#end:expander_1\
\#show:expander_2\ Title for Expander_2 (initially shown) \#be-

gin:expander_2\
First line of Expander_2
Second line of Expander_2
Third line of Expander_2
Fourth line of Expander_2
\#hide:expander_3\ Expander_3 nested within Expander_2 \#be-

gin:expander_3\
First line of Expander_3
Second line of Expander_3
\#end:expander_3\
\#end:expander_2\
\#hide:expander_4\ Title for Expander_4 (controlled by Expander_1)

- 70 -

Chapter 3: SNMP Probes

\#begin:expander_1\
First line of Expander_4
Second line of Expander_4
Third line of Expander_4
Fourth line of Expander_4
\#end:expander_1\

</snmp-device-display>

- 71 -

The <snmp-device-alarmpoints> Section

The <snmp-device-alarmpoints> Section
InterMapper can monitor multiple conditions within a single device (e.g., a single
piece of hardware) and give separate, independent notifications for each. For
example, it can send notifications for a high temperature alarm independent of a
low-memory condition in the same device.

Each of these conditions is called an "alarm point". InterMapper's custom SNMP
probe facility allows you to define multiple alarm points for a device, along with
their thresholds and the notifications to be sent.

Note: Alarm Point probes are typically customized to a particular purpose, which
specifies both the conditions under which alerts are sent and the notifiers to which
they are sent. To send an alert using a particular notifier, you must:

l Edit the <snmp-device-alarmpoints> section of probe containing the alarm
points as described in Alarm Point Format (Pg 76), and

l Enter the name of the notifier in the <snmp-device-notifiers> section as
described in Alarm Point Notifiers (Pg 81).

In probes that contain them, all Alarm Points are sent to the "Default Sounds" noti-
fier by default.

InterMapper tracks the state of each alarm point separately. Alarms on one point
will not affect the status, logging, or notifications of any other alarm point.
However, the visual appearance of a device will reflect the most serious condition
of any of its contained alarm points.

Alarm points have the following five severities. Each severity is assigned a color
for quick visual identification.

Severity Color Description

Clear Green Nothing exceptional to report

Minor Yellow Device has departed from its normal "clear" state

Major Orange Device's operation is significantly affected

Critical Solid Red Device's operation is seriously degraded

Down Blinking red Device is unresponsive, actual state is not known

Every time an alarm point changes from one severity to another:

l The the new condition is logged to the log file.
l A notification is sent using the existing InterMapper notifiers, including
sounds, e-mail, paging modem or SNPP, or running scripts.

Alarm Points - What the User Sees

InterMapper displays devices with alarm points much the way it shows "regular"
devices. A device's icon is colored according to the most serious condition of all its
alarm points.

- 72 -

Chapter 3: SNMP Probes

Note that these colors correspond closely with InterMapper's OK/Warn-
ing/Alarm/Down coloring. The Critical state is new, and gets a solid red color to
indicate that it's "worse" than the orange Alarm or Major severity.

A device's icon takes on the color of its most serious alarm point. For example, a
device with two alarm points, one in Critical and one in Minor severity is colored a
solid red.

- 73 -

The <snmp-device-alarmpoints> Section

Acknowledgments

Acknowledging an alarm lets the operator indicate that they know about a problem
and that they are working on it. An acknowledgment blocks further notifications for
that alarm, and colors the icon blue to show that, although the problem remains,
someone has taken responsibility for it.

The blue-acknowledged color makes it easy to see new problems at a glance.
When all icons are green (working properly) or blue (in alarm, but being worked
on) any new alarm appears as a yellow, orange, or red icon.

Alarm points can be acknowledged independently. That is, acknowledging one
alarm point does not affect the state of other alarm points. Acknowledging an
alarm point leaves the device's color set to its most serious un-acknowledged
alarm point. When all alarm points have been acknowledged, the device icon turns
blue.

The Acknowledge win-
dow for devices with
alarm points will look
much like the current
Acknowledge window,
with these differences:

l When acknow-
ledging one
device, the
Acknowledge win-
dow will display a
list of the alarm
points, sorted in order of severity.

l The operator may select one, many, or all the alarm points of a device and
acknowledge them.

l Selecting multiple devices and acknowledging them at once acknowledges
each alarm point of each device in that one action.

l The Acknowledge window also contains a text field that is used to enter a com-
ment about who is acknowledging the alarm, and why.

- 74 -

Chapter 3: SNMP Probes

Notifications

Alarm points can use the same notification settings as the device, or they can have
independent notifications. That is, each alarm point's set of notifications can be sep-
arate from any others, and each transition to a new severity can have its own noti-
fication.
Notifications for alarm points follow the current InterMapper scheme of sending
the notification to an identity. Each identity is configured to use a single notification
method (sound, e-mail, modem paging, SNPP, running a script, etc.) to send the
desired message.
Alarm point notifications can have independent repeats, delays, and counts, as
well. They are defined in the probe file as described in the Alarm Point Notifier List
(Pg 81) section.

Log File Messages

InterMapper writes messages to the Event Log file for individual alarm point
actions. The entries will be written on a change of severity, for notifications,
acknowledgements, or for maintenance mode changes. The lines will have tab-
delimited fields in this order:

l Date-time Date and time the entry was made into the log file
l Severity A four or five-character severity of the event (clear, minor, major,
crit, unkn)

l Identity The identity of the alarm point, with the map, device, and the alarm
point names separated by colons. (e.g., MapName:DeviceName:PointName)

l Explanatory-text The condition string or result-description of the alarm
point

Configuring Alarm Points

Alarm points are configured in a Custom SNMP Probe. The details are contained in
the Alarm Point Format (Pg 76) section of the manual.

- 75 -

Alarm Point File Format

Alarm Point File Format

Alarm points are defined in the <snmp-device-alarmpoints> section that contains
several lines of the format:

 name: severity (condition-to-test) Condition-String [=> Noti-
fier-list]

Here is an example:

<snmp-device-alarmpoints>

-- Name: Severity (Condition-to-Test) Condition-String
=> Notifer-List

SiteTemp: critical ($Temp > $CriticalHighTemp) "VERY_HIGH_TEMP" =>
PageFred

SiteTemp: major ($Temp > $MajorHighTemp) "HIGH_TEMP" =>
PageFred

</snmp-device-alarmpoints>

The fields of each entry are:

l Name is the name of the alarm point. If multiple lines in this section contain
the same Name, then they will be treated as the different thresholds for the
same alarm point.

l Severity is one of 'critical', 'major', 'minor' or 'clear'. It defines the resulting
severity of the given point test.

l Condition-to-test is an expression that evaluates to a boolean result, e.g. "
($Temp > $CriticalHighTemp)" You can use variables from the <snmp-
device-variables> section or the <parameters> section in your expression.
See the Probe Calculations topic's Expression Syntax section (Pg 82) for
details about valid expressions. In the example, $Temp is a variable read
from the SNMP device; $CriticalHighTemp and $MajorHighTemp are para-
meters set by the user.

l Condition-String is a string that describes the resulting status if the Condi-
tion-to-test evaluates to true.

l Notifier-list is an optional, comma-delimited list of notifier names. The noti-
fier names listed here are mapped to actual "InterMapper Notifier Names" via
the <snmp-device-notifiers> section.

When InterMapper evaluates alarm point expressions, it scans the list for a par-
ticular alarm point, and sets its status based on the first expression that "triggers".
If no expression triggers, then InterMapper sets the alarm point severity to "Clear"

- 76 -

Chapter 3: SNMP Probes

Macros

InterMapper supports several macros that show information about an alarm point:

l ${alarmpointname} shows the alarmpoint's severity as a five-character
string. The strings are colored to match the severity. To use this facility,
enter the alarmpoint name enclosed in ${...}. For example, to show the
SiteTemp alarm point's severity (above), enter:

${SiteTemp}

and it would generate the strings "CRIT ", "MAJOR", "MINOR", or "CLEAR",
with the appropriate color.

l ${alarmpointname:condition} shows the alarmpoint's condition string, as
defined in the <snmp-device-alarmpoints> section. For example, to show the
SiteTemp alarm point's condition above, type:

${SiteTemp:condition}

and it would generate the string "VERY_HIGH_TEMP". This string may contain
any markup as described on the Probe File Description (Pg 17) page.

AlarmPoint Facilities

InterMapper provides several alarm point facilities:

Underscore Feature

Use the Underscore feature to control whether an alarm point is cleared per-
manently or temporarily when you reset the AlarmPointList.

A device's AlarmPointList contains the following important information:

l alarm points that are currently in alarm (i.e., not in Clear state)
l alarm points that were recently in alarm, but are now Clear.

This minimizes the clutter in the AlarmPointList, so that it only contains relevant
and interesting information. (All the other alarm points are assumed to be clear,
and therefore can be ignored.)

The "recently in alarm" qualifier deserves explanation. There is a link in the
device's Status Window that allows you to "reset the alarm point list" and remove
the cleared alarm points

Alarm point names that begin with an underscore ("_") are treated in this way
(hence the name of the facility.) For example: _SWO_PROC_SWO_PROC is an
underscore alarm point, whereas SWO_PROC_SWO_PROC is treated as a normal
alarm point.

- 77 -

Alarm Point File Format

State Transitions

l StartupWhen a map is opened, devices with alarm points are in the
Unknown (grey) state, and their AlarmPointList is empty.

l Normal Operation: As InterMapper receives information about a device's
state, either from a poll or a received trap, it sets its icon color accordingly.
If this information sets a new non-underscore alarm point (one whose state is
currently not known), it is added to the AlarmPointList, in the proper col-
or/severity. If it is for a new underscore alarm point, it is added to the
AlarmPointList only if the severity is not Clear.
If this new information updates an existing alarm point, then that point's
severity will be updated in the AlarmPointList.

l Resetting the AlarmPointList:When the user clicks an AlarmPointList's
Reset link in the status window, all the Clear alarm points are removed from
the device's AlarmPointList. All alarm points that are in alarm (not Clear)
remain in the list.

Note: The Reset link removes all "clear" alarm points, but the effect is per-
manent only for "underscore" alarm points. non-underscore alarm points are
cleared temporarily; the cleared non-underscore alarm points reappear in the
status page in the next refresh (unless the condition that resulted in "clear"
severity has changed).

Resetting to Neutral Alarm State

InterMapper can receive a trap or some other command that sets a device into the
"Startup" state described above. This is useful for the process of re-synchronizing
InterMapper's notion of a device's state with its actual state. A single trap could
indicate, "I don't know the state of a device" (perhaps because it had gone down,
and now came back up), and InterMapper reflects that lack of certainty by clearing
the alarm point list and turning the device grey.

InterMapper provides a "reset" severity that resets the device to its "power on"
state. That is, the device and all its alarm points are set to the Unknown state.
Such an alarm point is never listed in the AlarmPointList.

Usage:

DeviceResetRule: reset (reset-condition) condition-string => Noti-
fier-List

If reset-condition is true and there are alarms to be cleared, an event log entry will
be created for the action. If the condition-string is not empty, a notification will be
sent to the Notifier-List.

- 78 -

Chapter 3: SNMP Probes

Facilities to speed up rule evaluation

We will implement a "Break" severity that will abort the processing of the remain-
ing rules of the probe if ever its expression is true. Such an alarm point will never
be listed in the AlarmPointList.

Usage:

BreakRule: break (break-condition) condition-string => Notifier-
List

In a break rule, Notifier-List is not used. If the condition-string is not empty, an
event log message will be created everytime this rule fires (this is done for debug-
ging purposes).

Sample probe

Below a sample probe that uses all the features decribed above. To test the probe,
use the net-snmp snmptrap program to send traps to the device. For example, to
set $trapVar to 5, use the following command line:

snmptrap.exe -v2c -c community computername '' 1.3.6.1.4.1.11898.2.1
1.3.6.1.4.1.11898.2.1.18.1.18 i 5

In the sample probe below, three trap variables are used in three separate alarm
points. The first group of alarm points (_trapVarAP) is an "underscore" alarm
point, the state is not shown unless the alarm point reaches a non-clear state
(minor, major, critical). Note that setting the $trapVar variable to 4 never brings
the alarm point state to critical since there is a break rule right before the rule that
brings the state to critical state:

<header>
type = "custom-snmp"
package = "com.dartware"
probe_name = "snmp.testalarmpoint"
 human_name = "Alarm point test example"
 version = "0.1"
 address_type = "IP,AT"
 flags = "SNMPv2c"
 port_number = "161"

</header>

<description>
...

</description>

<snmp-device-variables>
trapVar, 1.3.6.1.4.1.11898.2.1.18.1.18, TRAPVARIABLE,

"trap variable 1"
trapVar2, 1.3.6.1.4.1.11898.2.1.18.1.19, TRAPVARIABLE,

"trap variable 2"
trapVar3, 1.3.6.1.4.1.11898.2.1.18.1.20, TRAPVARIABLE,

"trap variable 3"
</snmp-device-variables>

- 79 -

Alarm Point File Format

<snmp-device-notifiers>
NotifySomeone: "NotifyFred:0:0:0"

</snmp-device-notifiers>

<snmp-device-alarmpoints>
 -- sample underscore alarm point

-- the three reset alarm point have the same effect: resetting
the device state to initial state

 _trapVarAP: clear ($trapVar == "2") "trapVar - clear" => Noti-
fySomeone

_trapVarAP: reset ($trapVar == "3") "trapVar - reset" => Noti-
fySomeone

_trapVarAP: minor (${trapVar} == "4") "trapVar - minor" => Noti-
fySomeone

_trapVarAP: critical (${trapVar} == "5") "trapVar - major" =>
NotifySomeone

_trapVarAP: break ($trapVar == "6") "trapVar - break" => Noti-
fySomeone

_trapVarAP: critical (${trapVar} >= "6") "trapVar - critical" =>
NotifySomeone

 -- other, normal alarm points
trapVarAP2: clear ($trapVar2 == "2") "trapVar2 - clear" => Noti-

fySomeone
trapVarAP2: reset ($trapVar2 == "3") "trapVar2 - reset" => Noti-

fySomeone
trapVarAP2: break ($trapVar2 == "4") "trapVar2 - break" => Noti-

fySomeone
trapVarAP2: critical (${trapVar2} >= "4") "trapvar2 - critical"

=> NotifySomeone

 trapVarAP3: clear ($trapVar3 == "2") "trapVar3 alarm" => Noti-
fySomeone

trapVarAP3: reset ($trapVar3 == "3") "trapVar3 alarm" => Noti-
fySomeone

trapVarAP3: break ($trapVar3 == "4") "trapVar4 alarm" => Noti-
fySomeone

trapVarAP3: critical (${trapVar3} >= "4") "trapvar alarm" => Noti-
fySomeone
</snmp-device-alarmpoints>

<snmp-device-display>
\B5\Trap variable values\0P\
\4\trapvar:\0\ $trapVar, ${_trapVarAP:condition}\0P\
\4\trapvar2:\0\ $trapVar2, ${trapVarAP2:condition} \0P\
\4\trapvar3:\0\ $trapVar3, ${trapVarAP3:condition} \0P\

 $alarmpointlist
</snmp-device-display>

- 80 -

Chapter 3: SNMP Probes

Alarm Point Notifier List

The <snmp-device-notifiers> section contains several lines of the format:

 NotifierName: "notifier-rule" [, "notifier-rule"]

where the NotifierName is an identifier that can be used in the notifier-list section
of the alarm-points section, and the notifier-rule is a quoted specification for a noti-
fication rule.

A notifier-rule contains the name of the actual InterMapper notifier and the noti-
fication delay, repeat and count, using the format below (the quote characters are
required):

 "name:delay:repeat:count"

Delay and repeat are specified in minutes. If values for delay and repeat are omit-
ted, the value is zero. The count is the number of additional times the notification
is repeated. If repeat is zero, the count will be ignored because there is no repeat.
If repeat is non-zero and the count is omitted, the count is infinite (repeat
forever).

<snmp-device-alarmpoints>
-- Name: Severity (Condition-to-Test) Condition-String

=> Notifer-List
SiteTemp: critical ($Temp > $CriticalHighTemp) "VERY_HIGH_TEMP"

=> PageFred
SiteTemp: major ($Temp > $MajorHighTemp) "HIGH_TEMP"

=> PageFred
</snmp-device-alarmpoints>

<snmp-device-notifiers>
PageFred: "Fred via Pager:0:0:0"

</snmp-device-notifiers>

In this example, either of the SiteTemp alarms triggers the "PageFred" notifier.
Looking farther down in the <snmp-device-notifiers> section, we see that
"PageFred" sends the notification to the "Fred via Pager" (which is defined in the
Notification list.)

- 81 -

Probe Calculations

Probe Calculations
InterMapper can compute values from data retrieved from devices, including
SNMP MIB variables, round-trip time, packet loss, availability, etc. The results of
these computations can be compared to thresholds to set device status and indic-
ate problems.

Expression Syntax

InterMapper's Expression Syntax has the following features:

l Supports arithmetic expressions using +, -, *, /, %, and unary minus.
l Supports the use of parentheses to group sub-expressions for calculation
first.

l Stores all intermediate and final results as double-precision floating point
numbers.

l Supports relational operators <, >, <=, >=, =, <>, ==, !=. The value for
TRUE is "1.0". The value for FALSE is "0.0".

l Supports short-circuit logical operators 'and', 'or', 'not' as well as &&,||,!,.
l Supports variables and functions from a provided symbol table. Variables
may use $var syntax or ${var} syntax. Persistent variables retain values
between polls. For more information, see Using Persistent Variables (Pg 45).

l Supports built-in functions for bitwise operations, rounding, and other com-
mon mathematical functions.

l Supports embedded string comparisons and simple regular expression tests.
A variable in double-quotes will be treated as a string. All double-quoted
strings are interpolated for variables in a Perl-like fashion. The use of + as
the concatenation operator is supported. See below for an example that uses
Regular Expressions (Pg 91).

The set of capabilities are derived from C, Perl, Excel, and expr(1).

Reserved keywords

l and
l or
l not

Precedence Table (Least to Most)

1. Assignment: :=
2. Conditional Expression: ?:
3. Logical Or: 'or', ||
4. Logical And: 'and', &&
5. Equality Tests: ==, =, !=,
6. Relational Tests: <, >, <=, >=
7. Addition, Subtraction, Concatenation: +,-
8. Multiplication, Division, Modulo: *, /, %
9. String Matching: =~, !~
10. Unary: -, !, 'not'

- 82 -

Chapter 3: SNMP Probes

Built-in Numeric Functions

l abs(x) - Absolute value of 'x'.
l round (Pg 84)(x),round(x,y) - Round 'x' to nearest integer.
l trunc(x) - Remove all digits after the decimal point; e.g. trunc(3.987) = 3.
l min(x1, x2, ... , xn) - Minimum value of x1, x2, ..., xn.
l max(x1, x2, ... , xn) - Maximum value of x1, x2, ..., xn.
l bitand(x, y) - Bitwise 'and' of 'x' and 'y'.
l bitor(x, y) - Bitwise 'or' of 'x' and 'y'.
l bitlshift(x, y) - Bits of 'x' shifted left by 'y' bits.
l bitrshift(x, y) - Bits of 'x' shifted right by 'y' bits.
l bitxor(x, y) - Bitwise exclusive-or of 'x' and 'y'.
l sin(x) - sine of 'x' where 'x' is in radians.
l cos(x) - cosine of 'x' where 'x' is in radians.
l tan(x) - tangent of 'x' where 'x' is in radians.
l pi() - value of PI (e.g. 3.14159...)
l pow(x, y) - 'x' to the power of 'y'.
l sqrt(x) - square root of 'x'.
l exp(x) - e to the power of 'x', where e is the base of the natural logarithms.
l log(x) - natural logarithm of 'x'.
l log(x, y) - logarithm of 'x' to base 'y', e.g. log(100, 10) = 2
l time() - Time in seconds since 1 January 1970 UTC.

Built-in String Functions

l defined (Pg 84)(str) - Takes a string argument, and returns a non-zero value
(1) if the variable name specified in the input string is defined.

l strfind (Pg 84)(strToBeSearched STRING, substrToFind STRING) - Case sens-
itive match returns the position of the first matching substring.

l strifind (Pg 84) (strToBeSearched STRING, substrToFind STRING) - Case
insensitive match returns the position of the first matching substring.

l strlen (Pg 85)(str) - Returns the length in bytes of the string 'str' or the com-
bined length of all string arguments.

l sprintf (Pg 85)(fmt, ...) - Returns formatted string using format specifier
'fmt'. Format specifier 'fmt' contains format codes that begin with '%'.

l strftime (Pg 88)(fmt, [secs]) - Returns formatted date/time string using
format specifier 'fmt'.

l strptime (Pg 88)(str, fmt) - Returns the number of seconds since UTC 1970
represented by the given date/time string, as interpreted using the specified
format code.

l subid (Pg 89)(oid, start, length) - Gets the specified length sub-OIDs from a
given OID string, starting from index start (the index starts from 0).

l substr (Pg 89)(str, offset, len)
l unpack (Pg 90)(binary str, fmt)
l Regular Expressions - See below for an example that uses Regular Expres-
sions (Pg 91).

- 83 -

Probe Calculations

Function Descriptions
defined

FUNCTION defined(variable:STRING):INTEGER;

Returns a non-zero value (1) if the variable name specified in the input string is
defined (it has already been assigned a value).

Note: This function takes a string argument. Note the usage below.

Example:

 defined("var2") == 1 ? "$var2 is defined" : "$var2 is undefined"

round

FUNCTION round(x:DOUBLE, y:INTEGER):DOUBLE;

FUNCTION round(x:DOUBLE):INTEGER;

Rounds a given double value (x) to the nearest integer or to the given number of
decimal places (y).

Examples:

round(8.6) --> 9
round(3.14159, 3) = 3.142

strfind

FUNCTION strfind(strToBeSearched:STRING, substrToFind:STRING):INTEGER

Case-sensitive string match returns an integer representing the position of the first
occurrence of a substring in the string. If the substring is not found, the function
returns a value of -1.

Example:

strfind("Ethernet Interface", "int")

returns -1 (did not find the substring)

strifind

FUNCTION strifind(strToBeSearched:STRING, substrToFind:STRING): INTEGER

Case-insensitive string match returns an integer representing the position of the
first occurrence of a substring in the string. If the substring is not found, the func-
tion returns a value of -1.

- 84 -

Chapter 3: SNMP Probes

Example:

strifind("Ethernet Interface", "int")

returns 9 (found the substring at position 9)

strlen

FUNCTION strlen(str[, ...]:STRING):INTEGER

Returns the length of the string str in bytes.
Returns the combined length of all string arguments in bytes.

Examples:

strlen("HelpSystems") --> 11
strlen("HelpSystems", "2000") --> 15

sprintf

FUNCTION sprintf(fmt:STRING, ...):STRING

Returns formatted string using format specifier fmt. Format specifier fmt contains
format codes that begin with '%'. The following format codes are supported:

l c - Formats numeric argument as ascii character
l d - Formats numeric argument as decimal integer
l o - Formats numeric argument as octal integer
l x - Formats numeric argument as hexadecimal number (lower case)
l X - Formats numeric argument as hexadcimal number (upper case)
l u - Formats numeric argument as decimal integer (unsigned)
l s - Formats argument as an ascii string (NUL terminated)
l a - Formats argument as a hexadecimal string with bytes separated by ':'
l f - Formats numeric argument as floating point (fixed precision)
l e - Formats numeric argument as floating point (scientific notation)
l g - Formats numeric argument as floating point (easy to read)
l % - Prints a percent sign

The general specification for a format code is:

% [-] [<width>] [. <precision>] <code>

- 85 -

Probe Calculations

String Formatting

For string data using %s, the width specifies the minimum width of the output
field, and the precision specifies the number of characters to output. If the number
of output characters is less than the minimum field width, the output is padded
with spaces.

Example:

sprintf("%12s", "HelpSystems")
 Results in " HelpSystems"

sprintf("%s", "HelpSystems")
 Results in "HelpSystems"

The default alignment is to the right; so padding is added to the beginning of the
string. To left align the output of %s, you need to include a '-' immediately fol-
lowing the '%':

sprintf("%-12s", "HelpSystems")
 Results in "HelpSystems "
sprintf("%-10.4s", "HelpSystems")
 Results in "Help "

Integer Formatting

Integers format similar to strings, except the <precision> field specifies the max-
imum field width, and this is enforced by padding with 0's if necessary.

sprintf("%5d", 12)
 Results in " 12"
sprintf("%-5d", 12)
 Results in "12 "
sprintf("%6.5d", 12)
 Results in " 00012"
sprintf("%-2X", 15)
 Results in "F "
sprintf("%-2.2x", 15)
 Results in "0f"

- 86 -

Chapter 3: SNMP Probes

Floating Point Formatting

The floating point format codes use the <precision> field to specify the number of
decimal places following the decimal point. %f uses the format '[-]ddd.ddd', and
%e uses the format '[-]d.ddde+-dd'.

sprintf("%f", 1/2)
 Results in "0.500000"
sprintf("%5.3f", 1/2)
 Results in "0.500"
sprintf("%e", 1/2)
 Results in "5.000000e-01"
sprintf("%g", 1/2)
 Results in "0.5"

Address Formatting

The %a format code outputs a string in hexadecimal.

sprintf("%a", "\x01\x02\x03")
 Results in "01:02:03"
sprintf("%a", "HelpSystems")
 Results in "48:65:6C:70:53:79:73:74:65:6D:73"

- 87 -

Probe Calculations

strftime

FUNCTION strftime(fmt [, time])

Returns formatted date/time string using format specifier 'fmt'. Format specifier
'fmt' contains format codes that begin with '%'. If a time argument is provided, it
must be in seconds since UTC 1970. If no time argument is provided, it defaults to
the current time. The following format codes are supported on all platforms:

l a - Abbreviated weekday name
l A - Full weekday name
l b - Abbreviated month name
l B - Full month name
l c - Date and time formatted something like "Tue Feb 06 10:25:22 2007"
l d - Day of month (01-31)
l H - Hour number (00-23)
l I - Hour number (01-12)
l j - Day of the year number (001-366)
l m - Month number (01-12)
l M - Minute number (00-59)
l p - "AM" or "PM"
l S - Second number (00-61)
l s - returns the number of seconds since the Epoch, 1970-01-01 00:00:00
+0000 (UTC).

l U - Week of the year number (00-53). First Sunday is day 1 of week 1.
l w - Weekday number (0-6). Sunday is 0.
l W - Week of the year number (00-53). First Monday is day 1 or week 1.
l x - Date.
l X - Time.
l y - Two-digit year number (00-99)
l Y - Year with century (e.g. 2007)
l z - returns the +hhmm or -hhmm numeric timezone (that is, the hour and
minute offset from UTC) for the InterMapper server.

l % - Prints a percent sign (when preceded by a %)

The strftime function is implemented using the identically named function in the
underlying system. Other format codes may work, but these are not portable.

strftime("%c")
 Results in "Tue Feb 6 11:19:24 2007"
strftime("%Y-%m-%d", 1170778895)
 Results in "2007-02-06"

strptime

FUNCTION strptime(str , fmt)

Returns the number of seconds since UTC 1970 represented by the given date/time
string, as interpreted using the specified format code. Basically, this function can
be used to parse dates.

This function uses the same underlying format codes as strftime.

- 88 -

Chapter 3: SNMP Probes

Example:

strftime("%Y", strptime("1990", "%Y"))
 Results in "1990"

subid

FUNCTION subid(oid, start, length)

Gets the specified length sub-OIDs from a given OID string, starting from index
start (the index starts from 0). When the start index is negative, it will be counted
from the end of the OID string.

Examples:

subid("1.3.6.1.2.1.4.20.1.1.10.10.2.20", 0, 2) --> "1.3"
subid("1.3.6.1.2.1.4.20.1.1.10.10.2.20", -4, 4) --> "10.10.2.20"
subid("1.3.6.1.2.1.4.20.1.1.10.10.2.20", 4, 4) --> "2.1.4.20"
subid("1.3.6.1.2.1.4.20.1.1.10.10.2.20", -2, 4) --> "2.20"
subid("1.3.6", 3, 4) --> ""
subid("1.3.6", 2, 4) --> "6"
subid("1.3.6", -4, 4) --> "1.3.6"
subid("1.3.6", -2, 4) --> "3.6"

substr

FUNCTION substr(str:STRING, offset:INTEGER):STRING;
FUNCTION substr(str:STRING, offset:INTEGER, length:INTEGER):STRING;

Extract a substring out of str and return it. The substring is extracted starting at
offset characters from the start of the string.

l If offset is negative, the substring starts that far from the end of the string
instead; length indicates the length of the substring to extract.

l If length is omitted, everything from offset to the end of the string is
returned.

l If length is negative, the length is calculated to leave that many characters
off the end of the string. If neither offset nor length is supplied, the function
will return str. (See Perl substr).

Examples:

substr("0123456789", 7) --> "789"
substr("0123456789", 4, 2) --> "45"
substr("0123456789", 4, -2) --> "4567"
substr("0123456789", -2, 1) --> "8"

- 89 -

Probe Calculations

unpack

 FUNCTION unpack(str:STRING, format:STRING):VALUE

Take a string str representing a data value and convert it into a scalar value. The
format string specifies the type of value to be unpacked. (See perl unpack).

l If the input string is shorter than the expected number of bytes to be
unpacked, treat the input string as if it is padded with zero bytes at the end.

unpack("\1\2\3", ">L")

is the same as

unpack("\1\2\3\0", ">L")

l If the input string is longer, the remaining bytes in the input are ignored.
l If the endian modifier is not supplied, the target platform's byte order (little
endian on Windows, big endian on Mac) is used.

l If format specifier is not supplied, the function returns str.

Format
specifier

Description

c signed character value (1 byte)
C unsigned character value (1 byte)
l signed long value (4 bytes)
L unsigned long value (4 bytes)
s signed short value (2 bytes)
S unsigned short value (2 bytes)
#B a base64 string (all bytes)
> big-endian modifier
< little-endian modifier
H decodes the given hexadecimal value and returns an

integer (up to 32-bits)
#H decodes the given hexadecimal value and returns a

string

Examples:

unpack("F", "c") --> 70 (decimal
ASCII value)
unpack("F", "H") --> 15 (Hex converted to
decimal value)
unpack("48656C7053797374656D732C20496E632E", "#H") -> HelpSystems,
Inc.

Notes:

l It is difficult to create examples that input unprintable characters. Refer to
the perl documentation for more information about unpack().

- 90 -

http://perldoc.perl.org/functions/unpack.html

Chapter 3: SNMP Probes

l The unpack() function supports one format code in the format string.

Using Regular Expressions In Custom SNMP Probes

You can use a regular expression to divide a string into separate variables after
retrieving it from a device. In the example below, a customer had a piece of equip-
ment that returned the following information in sysDescr.0:

FW TR6-3.1.4Rt_F213E4, 2.4GHz, 0dBi ext. antenna

They created a probe that retrieved sysDescr.0 and then parsed out those strings
with the following commands in the <snmp-device-variables> section of the
probe:

<snmp-device-variables>
 sysDescr, 1.3.6.1.2.1.1.1.0,

DEFAULT, "system description"
 firmware, "$sysDescr" =~ "̂ FW ([̂ ,]+), (.+)Hz, (.+) antenna"
;"${1}", CALCULATION, "Firmware"
 frequency, "${2}",

CALCULATION, "Frequency"
 antenna, "${3}",
CALCULATION, "Antenna"

. . .
</snmp-device-variables>

1. Retrieve sysDescr.0 (OID of 1.3.6.1.2.1.1.1.0) and assign it to the variable
$sysDescr.

2. Set the value of $firmware based on the calculation. There are many things
going on in this line:

l The "=~" operator indicates that the $sysDescr variable should be
parsed using the regular expression string that follows.

l This regular expression breaks the string at the comma characters. The
"[^,]" matches any single character that isn't a comma; adding a "+"
forms a pattern that matches multiple non-comma characters.

l Parentheses around a pattern serve to memorize a string. Each pair of
paren's matches a string whose value is placed in variables numbered
${1}, ${2}, ${3}, etc.

l The semicolon followed by "${1}" indicates that the entire
CALCULATION should return the value of ${1} as a string.

l The variable $firmware thus gets assigned the value of ${1}

3. Assign the variable $frequency with the result of the second match (${2}).
4. Assign the variable $antenna with the result of the third match (${3}).

Note: It is beyond the scope of this manual to describe the full capabilities of reg-
ular expressions. There are a number of tutorials available on the web. One
example is the Perl Regular Expression Tutorial.

- 91 -

http://perldoc.perl.org/perlretut.html

Specifying SNMP OIDs in Custom Probes

Specifying SNMP OIDs in Custom Probes
Introduction

InterMapper supports two kinds of OID's: Numeric and Symbolic. The Symbolic
OIDs become available when a MIB has been imported into InterMapper.

In addition, InterMapper supports three kinds of OID expressions: Get-Next, Trap-
Conditional, and Index-Derived.

Numeric OID's

Numeric OID's contain only numbers separated by periods. Preceding periods are
ignored. A trailing period is allowed if there is only one subid.

Examples:

.1
1.
1.3.6

Invalid examples:

1 (no period)
1.3.6. (trailing period but with multiple subids)
1.3.6.blah (not numeric)
1.3.6.1.2.1.system.sysUpTime.0 (not numeric)

Unlike Net-SNMP, InterMapper ascribes no special meaning to OID's that begin
with a period; all numeric OID's are considered absolute.

Errors in numeric OID's are reported by the system to the Event Log when the
error is in a custom probe. The error message will have the form:

Syntax error in OID "1.3.6.1..1.2"

Symbolic OID's

A symbolic OID begins with a letter, after ignoring any preceding periods. Inter-
Mapper must be able to locate a MIB file that defines the symbols used. There are
three types of symbolic OID's:

1. Simple symbols specify a starting symbol and zero or more trailing subid's.
2. Relative symbols specify a starting symbol and one of more subid symbols.
3. Scoped symbols specify the name of the MIB, the scope operator ::, followed

by a simple or relative symbol.

Relative and scoped symbols are handy when a symbol is ambiguous, i.e. the
same symbol name is defined differently in two separate MIB files. You should
prefer the scoped OID form, when possible.

Symbolic names are case-sensitive.

- 92 -

Chapter 3: SNMP Probes

Examples:

Simple: sysUpTime
 sysUpTime.0
 enterprises.9.2.3.4.5

Relative: system.sysUpTime
 system.sysUpTime.0

Scoped: SNMPv2-MIB::sysUpTime
 SNMPv2-MIB::system.sysUpTime.0

Invalid Examples:

Simple: sysUpTiime (misspelled; not found)
 sysupTime (wrong case)
 sys%pTime (disallowed character %)
 sysUpTime.0. (bad; trailing period)

Relative: system.ifIndex (bad; ifIndex isn't under system)

Scoped: SNMPv2-MIB.sysUpTime (bad; must use :: for scoped OID)
 IF-MIB::sysUpTime (bad; wrong MIB module for sysUpTime)

Errors in symbolic OID's are reported by the system to the Event Log when the
error is in a custom probe. The error message will have the form:

Syntax error in OID "sys%pTime"

OIDs indexed by Strings

Certain MIBs specify tables that are indexed by strings. The net-snmp doc-
umentation at

http://www.net-snmp.org/tutorial/tutorial-5/commands/output-options.html

describes this. A convenient way to enter these OIDs is:

NET-SNMP-EXTEND-MIB::nsExtendOutLine."LOG"

and a SNMP variable could be created like this:

outLine, NET-SNMP-EXTEND-MIB::nsExtendOutLine."LOG",
DEFAULT, ""

- 93 -

http://www.net-snmp.org/tutorial/tutorial-5/commands/output-options.html

Specifying SNMP OIDs in Custom Probes

Limitations of Symbolic OID's

1. Symbolic OID's will only work if the necessary MIB file is loaded into Inter-
Mapper. If InterMapper cannot resolve the symbolic OID using a MIB file, this
is considered a syntax error in the symbolic OID. At this time, there is no way
to bundle a MIB file with a probe as one file; this is a future direction.

2. It may happen that two or more MIB files define the same symbol. When this
happens, InterMapper may pick the wrong definition. You can avoid this by
using the scoped OID form.

Get-Next OID Expressions

InterMapper has a special syntax for "get-next" style OID's - attach a + to the end
of the OID.

Normally, when you specify a variable to query in a custom SNMP probe, you spe-
cify the complete OID, including the instance. For example, you might specify
"sysUpTime.0" or "ifInOctets.13". For sysUpTime, the .0 specifies the (only)
instance. For ifInOctets, the .13 specifies the value for ifIndex 13.

There are occasions when you want to query a variable using a preceding OID. For
example, you might want to query the value of ifInOctets for the first interface, but
you can't assume the ifIndex of the first interface is 1. Here's how you would spe-
cify the OID:

ifInOctets+

To retrieve the value of ifInOctets for the interface whose ifIndex follows 13, spe-
cify the OID with a plus:

ifInOctets.13+

The plus sign must immediately follow the OID. Technically, it's not part of the
OID, but considered an operator in InterMapper's OID expression language.

Note: Get-Next OID expressions will not work for custom SNMP probes that specify
get-request queries.

- 94 -

Chapter 3: SNMP Probes

Trap-Conditional OID Expressions

Trap-conditional OID expressions allow you to assign a variable only when it
occurs in the varbind list of a certain trap. For example, you might want to set the
value of your probe's "sysUpTimeCrashed" variable to value of the "sysUpTime.0"
variable included in the varbind list of a "systemCrashed" trap. However, you don't
want to set "sysUpTimeCrashed" when you see the sysUpTime.0 value in any other
received trap. To restrict the assignment of sysUpTime.0 to only the sys-
temCrashed trap, you need to specify both the systemCrashed trap OID and the
sysUpTime.0 OID using the ?: operator. This combination is called a "Trap-Condi-
tional" OID, or "Trap OID" for short.

Examples:

systemCrashed?:sysUpTime.0

sysTrapOID?:sysContact

SOMEMIB::sysTrapOID.1?:SMIv2-MIB::sysContact

Supported in 4.4, the legacy format for trap OID's is a numeric OID followed by an
OID:

1.3.6.1.2.1::sysUpTime.0

The legacy format does not allow use of a symbolic name for a trap OID; this con-
flicts with the scoped format above. The use of :: for Trap-conditional OID expres-
sions is deprecated. Please use ?: in the future.

Index-Derived OID Expressions

When querying tables from SNMP devices, it is often useful to assign the value of a
variable from a row's OID index. This technique will work even if the values used
to index the row have an access of "not-accessible".

For more information, see Index-Derived Variables in the <snmp-device-vari-
ables-ondemand> Section topic.

- 95 -

SNMP Probe Example

SNMP Probe Example

<!--
 Single OID Custom Probe (com.dart-
ware.snmp.oidsingle.txt)
 Custom Probe for InterMapper
(http://www.intermapper.com)
 Please feel free to use this as a base for further
development.

 10 May 2007 Cloned from High Threshold probe -reb
3 Jul 2007 Changed probe name to Single OID Viewer -

reb
4 Sep 2012 Added a datasets section -jpd

 You can read the Developer Guide to learn more about
InterMapper Probes. It's at:

 http://intermapper.com/go.php?to=intermapper.devgui-
de
-->

<header>
 "type" = "custom-snmp"
 "package" = "com.dartware"
 "probe_name" = "snmp.oidsingle"
 "human_name" = "SNMP - Single OID Viewer"
 "version" = "1.4"
 "address_type"= "IP,AT"
 "port_number" = "161"
 "display_name"= "SNMP/Single OID Viewer"
 "flags" = "Minimal"
</header>

<snmp-device-properties>
 nomib2 = "true"
 pdutype = "get-request"
</snmp-device-properties>

<description>
\GB\Single OID Viewer\P\

This probe retrieves a single SNMP MIB variable and dis-
plays it in the device's Status Window.

\ib\Variable\p\ specifies the MIB name or OID for the
value to retrieve. If you have imported the MIB for
this device, you may enter the symbolic name for this
value, otherwise, simply enter its OID here.

\bi\Legend\p\ is a text string used to identify the
variable in the status window and any strip charts. If
left blank, the variable's name or OID will be used.

\bi\Units\p\ is a text string that will be displayed
next to the value in the Status Window. You can use it
for the unit of measure (packets/sec, degrees, etc.)

- 96 -

Chapter 3: SNMP Probes

\bi\Tag\p\ is a short text string that identifies a par-
ticular class of dataset. Tags will be used to cor-
relate different variables from different probes that
describe the same thing, such as CPU% or temperature.
</description>

-- Parameters are user-settable values that the probe
uses for its comparisons.
-- Specify the default values here. The customer can
change them and they will be retained for each device.

<parameters>
 "Variable" = "ifNumber.0"
 "Legend" = ""
 "Units" = ""
 "Tag" = "exampletag"
</parameters>

-- SNMP values to be retrieved from the device, and
-- Specify the variable name, its OID, a format (usu-
ally DEFAULT) and a short description.
-- CALCULATION variables are computed from other values
already retrieved from the device.

<snmp-device-variables>

 theLegend, ($Legend!="" ? "$Legend" : "$Vari-
able"), CALCULATION, "Legend/OID"
 theOID, $Variable , DEFAULT, "$theLegend"

</snmp-device-variables>

-- The <snmp-device-display> section specifies the text
that will be appended
-- to the device's Staus Window.

<snmp-device-display>
\B5\ $theLegend:\0P\ $theOID \3G\$Units\mp0\
</snmp-device-display>

<datasets>
 $theOID, "$Tag", "$Units", "false", "$Legend"
</datasets>

- 97 -

SNMP Trap Probes

type = "custom-snmp-trap"

A trap is an unsolicited packet sent from a device to InterMapper (or other SNMP
management console). The trap generally contains one or more data values that
give information about the device's state.

When a trap arrives, InterMapper first determines which device(s) on the enabled
maps should receive information from the trap. InterMapper examines the Agent
Address (for relayed traps) or the Source IP address, and passes a copy of the trap
packet to each device on the maps whose IP address matches. For example, if a
device with the IP address is on two maps, or is present twice on the same map,
each of those devices will receive a copy of the trap.

InterMapper then parses out the all the values from the trap and assigns them to
trap variables for use in the remainder of the probe.. InterMapper then re-eval-
uates the expressions in the probe, and sets the device status appropriately. If a
particular trap variable is not set by an incoming trap, expressions containing that
variable are not evaluated. See the The <snmp-device-variables> Section for
Traps (Pg 99) section below for details of defining trap variables.

Finally, as a result of receiving the trap, InterMapper re-polls the device that sent
the trap. This guarantees that InterMapper has the most up-to-date information
about the device's state. If another trap arrives before the final response of this
new poll has returned, InterMapper will complete the current poll and initiate
another round of polling to get the new state.

Note: A trap is sent as a UDP packet. If something on your network is causing
packet loss, it is possible to lose a trap packet. Therefore, HelpSystems recom-
mends that you don't rely completely on traps as a means for monitoring the
health of a device. There is no substitute for regular polling.

The Example Trap Probe (Pg 104) demonstrates how to retrieve and display the
contents of a trap.

- 98 -

Chapter 4

Chapter 4: SNMP Trap Probes

The <snmp-device-variables> Section For Traps
A Trap Variable is a variable defined in a custom probe file whose value is set to
a value received in a trap. InterMapper has three kinds of Trap Variables, only one
of which can be declared in a probe:

l Packet Trap Variables - a set of variables automatically set by Inter-
Mapper when a trap is received.

l Positional Trap Variables - a set of variables automatically set by Inter-
Mapper. Use positional Trap Variables to access data from the trap's VarBind
list by position in the list.

l Named Trap Variables - variables you define by associating an SNMP OID
with a name. If the OID exists in the trap's VarBind list, the variable is set to
the value in the trap.

A Trap Variable will never be polled: that is, InterMapper never sends an SNMP
GetRequest or GetNextRequest to retrieve its value.

Packet Trap Variables

In addition to the variables in the VarBind List, a probe can set variables based on
the fields of the trap packet’s header.

l $GenericTrap - The GenericTrap field in the trap (SNMPv1). This field can
take on the values:
 0 - coldStart;
 1 - warmStart;
 2 - linkDown;
 3 - linkUp;
 4 - authenticationFailure;
 5 - egpNeighborLoss;
 6 - An enterprise-specific value.

l $SpecificTrap - The value of the SpecificTrap field in the trap. If the $Gen-
ericTrap value is 0-5, the $SpecificTrap is zero (0); otherwise it is a positive
32-bit value specified by the vendor (SNMPv1).

l $TimeStamp - The TimeStamp field in the trap, in hundredths of a second.
l $Enterprise - The value of the SNMPv1 enterprise field (SNMPv1)
l $CommunityString - The value of the CommunityString field in the trap
(SNMPv1, SNMPv2c).

l $TrapOID - The value of the TrapOID field in the trap (SNMPv2c, SNMPv3).
l $AgentAddress - The IP address of the SNMP agent that generated the trap.
l $SenderAddress - The IP address of the device that sent the trap. This could
be different from the $AgentAddress when the sender is forwarding traps for
the agent.

l $SnmpVersion - Represents the version of the trap. Values can be 0 (v1), 1
(v2c) or 3 (v3).

l $VarbindCount - The number of variables contained in the VarBind list.

- 99 -

The <snmp-device-variables> Section For Traps

Positional Variables from the Varbind List

You can access values from the VarBind List by position using variables of the
form:

l $VarbindValueN - The value of the N'th variable in the trap's VarBind List
l $VarbindTypeN - The type of the N'th variable in the trap's VarBind List
l $VarbindOIDN - the OID of the N'th variable in the trap's VarBind List

Note: N may be from 1 to 50.

Named Trap Variables

The only way to set a named Trap Variable value is to receive a trap that contains
the OID in its VarBind List, or the set the named variable to the value of a pos-
itional variable. The Probe Variables section (Pg 52) of this document describes the
file format. Here is an example:

<snmp-device-variables>
 InterMapperTimeStamp, 1.3.6.1.4.1.6306.2.1.1.0, TRAPVARIABLE,
"Timestamp"
</snmp-device-variables>

In this example, the variable $InterMapperTimeStamp is set every time a trap
arrives containing the OID 1.3.6.1.4.1.6306.2.1.1.0 in the VarBind List. Trap Vari-
ables that don't have values set by an incoming trap are left undefined.

A full example trap file (Pg 104) is available.

- 100 -

Chapter 4: SNMP Trap Probes

Here's how several useful trap variables might be defined

<snmp-device-variables>
 genericTrapVar, $GenericTrap, TRAPVARIABLE, "Generic
Trap"
 specificTrapVar, $SpecificTrap, TRAPVARIABLE, "Specific
Trap"
 timeStampVar, $TimeStamp, TRAPVARIABLE, "Timestamp"
 enterpriseVar, $Enterprise, TRAPVARIABLE,
 "Enterprise"
 commStringVar, $CommunityString, TRAPVARIABLE, "Community
String"
 trapOIDVar, $TrapOID, TRAPVARIABLE, "Trap OID"
 agentAdrsVar, $AgentAddress, TRAPVARIABLE, "Agent
Address"
 senderAdrsVar, $SenderAddress, TRAPVARIABLE, "Sender
Address"
 snmpVersionVar, $SnmpVersion, TRAPVARIABLE, "SNMP Ver-
sion"
 varbindCountVar, $VarbindCount, TRAPVARIABLE, "Varbind
Count"
 -- the first and second values from the Varbind List by position
 trap_var1, $VarbindValue1, TRAPVARIABLE, "First value"
 trap_var2, $VarbindValue2, TRAPVARIABLE, "Second value"
</snmp-device-variables>

Note: The TRAPVARIABLE type causes the value to be displayed in the most useful
format. You can also use one of following to force the display to a certain format.
These variables are equivalent to their non-trapvariable counterparts, whose com-
plete descriptions of the formats are available in Probe Variables (Pg 52):

l TRAPVARIABLE-TOTAL-VALUE
l TRAPVARIABLE-PER-SECOND
l TRAPVARIABLE-PER-MINUTE
l TRAPVARIABLE-STRING*
l TRAPVARIABLE-INTEGER
l TRAPVARIABLE-HEXADECIMAL*
l TRAPVARIABLE-HEXNUMBER
l TRAPVARIABLE-DOUBLE

* STRING and HEXADECIMAL are both strings; they can't be charted.

- 101 -

The <snmp-device-variables> Section For Traps

Accessing Trap Variables by Position

When accessing VarBind List entries, you can access them either by name or by
position. Access by name is much easier to program and understand, but there
have been instances where a vendor's traps contained VarBind List entries with the
same name: in those cases you must get their values by position. Below are
examples of accessing VarBind List entries by name and by position.

Given this trap, InterMapper creates the following Event Log entry:

03/23 11:37:34 TRAP IC3 Demo System:Video Stream ENC01 LIVEWAVE-
MIB::deviceFaulted (v2c)

{ LIVEWAVE-MIB::deviceUnitID : "5",
 LIVEWAVE-MIB::deviceName : "5 - Video Stream",
 LIVEWAVE-MIB::deviceStatus : "6" }

The trap contains these three values: deviceUnitID, deviceName, and
deviceStatus. (InterMapper has already imported a LIVEWAVE MIB that defines
these OIDs.)

The variables are declared in the variables section:

<snmp-device-variables>
 deviceUnitID, LIVEWAVE-MIB::deviceUnitID, TRAPVARIABLE, "Device
Unit ID"
 deviceName, LIVEWAVE-MIB::deviceName, TRAPVARIABLE, "Device
Name"
 deviceStatus, LIVEWAVE-MIB::deviceStatus, TRAPVARIABLE, "Device
Status"
</snmp-device-variables>

When a trap is received, the probe variables above are set to the values of the trap
variables from the VarBind list. One way you could use them is as follows:

<snmp-device-thresholds>
 critical: deviceStatus == 3 "Problem with $deviceUnitID
$deviceName: Device status = $devicestatus"
 okay: deviceStatus == 1 "$deviceUnitID $deviceName functioning
normally."
</snmp-device-thresholds>

You can also access the variables by position in the VarBind list:

<snmp-device-variables>
deviceUnitID, LIVEWAVE-MIB::$VarbindValue1, TRAPVARIABLE, "Device

Unit ID"
deviceName, LIVEWAVE-MIB::$VarbindValue2, TRAPVARIABLE, "Device

Name"
deviceStatus, LIVEWAVE-MIB::$VarbindValue3, TRAPVARIABLE, "Device

Status"
</snmp-device-variables>

- 102 -

Chapter 4: SNMP Trap Probes

The <snmp-device-display> Section for Traps
Use the <snmp-device-display> section to format the device's Status window
exactly the same way as you do in an SNMP Probe. For more information, see the
SNMP Probe's <snmp-device-display> Section topic.

Trap Viewing and Logging
The contents of trap message are logged to the Event Log file at the time the trap
is received. There are two forms: Short and Verbose. (The format is controlled by
the Verbose Trap Logging checkbox in the Server Settings > SNMPpref-
erence pane.)

Short Trap Format

06/08 20:50:29 TRAP TestMap:192.168.2.1 1.3.6.1.4.1.6306 (333)
{ "321", "456" } (via 192.168.1.233)<p>

Verbose Trap Format:

06/08 20:50:05 TRAP TestMap:192.168.2.1 1.3.6.1.4.1.6306 (333)
{ 1.3.6.1.4.1.6306.99.1 : "321", 1.3.6.1.4.1.6306.99.2 : "456" }

(via 192.168.1.233)<p>

The fields of the trap entry in the log file are defined below, with examples in "[...
]":

l Date and Time - [06/08 20:50:05 TRAP]
The date and time followed by the word "TRAP"

l Map Name and Device ID - [TestMap:192.168.2.1]
The map name and device ID, separated by a colon (":")

l Enterprise OID and Trap Field - [1.3.6.1.4.1.6306 (333)]
The Enterprise OID, followed by the specific trap field in paren's

l VarBind List - The contents of the VarBind List, enclosed in curly braces, and
separated by commas.
Short format: { "321", "456" } shows only the values sent for each VarBind in
quotes.
or
Verbose format: { 1.3.6.1.4.1.6306.99.1 : "321", 1.3.6.1.4.1.6306.99.2 :
"456" }
shows the OID, a colon (":"), and the OID's value in quotes.

l Address - [(via 192.168.1.233)] The address of the relaying computer, if
present.

The verbose format shows all the information that was sent with the trap.

- 103 -

Example - Trap Viewer Probe

Example - Trap Viewer Probe
The following example shows the handling of traps.

<!--
SNMP Trap Viewer probe (com.dartware.snmp.trapdisplay.txt)
Probe for InterMapper (http://www.intermapper.com)

Copyright© HelpSystems, LLC.
Feel free to use this as the basis for creating new probes.

25 Apr 2005 Original version - reb
4 May 2005 Changed to "custom-snmp-trap" -reb

Modified for IM 4.4 header/display items.
8 May 2007 Added special trap variables to the probe and display

-reb
29 May 2007 Changed probe name to "Trap Display", updated descrip-

tion -reb
1 Jun 2007 Changed probe name to "Trap Viewer"; tweaked descrip-

tion;
left canonical name alone -reb

-->

<header>
"type" = "custom-snmp-trap"
"package" = "com.dartware"
"probe_name" = "snmp.trapdisplay"
"human_name" = "Trap Viewer"
"version" = "2.2"
"address_type" = "IP,AT"
"port_number" = "161"
"display_name" = "SNMP/Trap Viewer"

</header>

<description>
\GB\Trap Viewer Probe\P\

This probe listens for trap packets to arrive and displays the con-
tents of the
trap in the Status Window. It does not actively poll the device, nor
does it
take any action based on the trap contents.

You can view all the variables that have been parsed from the trap
packet in the
device's Status Window. You can also use this as a prototype for mak-
ing your own
trap probes.

\B\How the Trap Viewer Probe Works\p\

When a trap arrives, the probe parses the trap to get the values from
the trap's
header as well as the first ten items in its Varbind List. It assigns
all these
values to variables that can be used in the probe and displayed in
the Status
Window.

- 104 -

Chapter 4: SNMP Trap Probes

To see how this probe works, you can configure your equipment to send
traps to
InterMapper, or use the net-snmp \b\snmptrap\p\ command. Either way,
the Status
Window will show the values present in any traps that arrive.

For more information on the \b\snmptrap\p\ command, read the net-snmp
documentation for the
\u2=http://www.net-snmp.org/tutorial/tutorial-4/com-
mands/snmptrap.html\trap
tutorial\p0\ and the
\u2=http://www.net-snmp.org/docs/man/snmpinform.html\snmptrap com-
mand\0p\. The
remainder of this note shows how to send a trap with variables from
the Dartware
MIB:

\i\SNMPv1 Traps\p\

a) Add a device to a map with the IP address \i\192.168.56.78\p\
b) Set it to use this probe
c) Issue the snmptrap command below from the command line (it should
all be on one line):

snmptrap -v 1 -c commString localhost
1.3.6.1.4.1.6306 192.168.56.78 6 123 4567890
1.3.6.1.4.1.6306.2.1.1.0 s "05/08 23:26:35"
1.3.6.1.4.1.6306.2.1.2.0 s Critical
1.3.6.1.4.1.6306.2.1.3.0 s "Big Router"
1.3.6.1.4.1.6306.2.1.4.0 s "Critical: High Traffic"
1.3.6.1.4.1.6306.2.1.5.0 s "127.0.0.1"
1.3.6.1.4.1.6306.2.1.6.0 s "SNMP Traffic Probe"

\i\SNMPv2c Traps\p\

a) Add a device to the map with an IP address of \i\localhost\p\
b) Set it to use this probe
c) Issue the snmptrap command below from the command line (it should
all be on one line)

snmptrap -v 2c -c commString localhost
4567890 1.3.6.1.4.1.6306
1.3.6.1.4.1.6306 192.168.56.78 6 123 4567890
1.3.6.1.4.1.6306.2.1.1.0 s "05/08 13:26:35"
1.3.6.1.4.1.6306.2.1.2.0 s Critical
1.3.6.1.4.1.6306.2.1.3.0 s "Big Router"
1.3.6.1.4.1.6306.2.1.4.0 s "Critical: High Traffic"
1.3.6.1.4.1.6306.2.1.5.0 s "127.0.0.1"
1.3.6.1.4.1.6306.2.1.6.0 s "SNMP Traffic Probe"

</description>

<!-- Copy/paste these lines into the terminal window for testing...

snmptrap -v 1 -c commString localhost 1.3.6.1.4.1.6306 192.168.56.78
6 123
4567890 1.3.6.1.4.1.6306.2.1.1.0 s "05/08 13:26:35"
1.3.6.1.4.1.6306.2.1.2.0 s
Critical 1.3.6.1.4.1.6306.2.1.3.0 s "Big Router"

- 105 -

Example - Trap Viewer Probe

1.3.6.1.4.1.6306.2.1.4.0 s
"Critical: High Traffic" 1.3.6.1.4.1.6306.2.1.5.0 s "127.0.0.1"
1.3.6.1.4.1.6306.2.1.6.0 s "SNMP Traffic Probe"

snmptrap -v 1 -c commString localhost 1.3.6.1.4.1.6306 192.168.56.78
6 123
4567890 1.3.6.1.4.1.6306.2.1.1.0 s "05/08 13:26:35"
1.3.6.1.4.1.6306.2.1.2.0 s
Critical 1.3.6.1.4.1.6306.2.1.3.0 s "Big Router"
1.3.6.1.4.1.6306.2.1.4.0 s
"Critical: High Traffic" 1.3.6.1.4.1.6306.2.1.5.0 s "127.0.0.1"
1.3.6.1.4.1.6306.2.1.6.0 s "SNMP Traffic Probe"
1.3.6.1.4.1.6306.2.1.7.0 s
"var7" 1.3.6.1.4.1.6306.2.1.8.0 s "var8" 1.3.6.1.4.1.6306.2.1.9.0 s
"var9"
1.3.6.1.4.1.6306.2.1.10.0 s "var10" 1.3.6.1.4.1.6306.2.1.11.0 s
"var11"
1.3.6.1.4.1.6306.2.1.12.0 s "var12"

snmptrap -v 2c -c commString localhost 4567890 1.3.6.1.4.1.6306
1.3.6.1.4.1.6306.2.1.1.0 s "05/08 13:26:35" 1.3.6.1.4.1.6306.2.1.2.0
s Critical
1.3.6.1.4.1.6306.2.1.3.0 s "Big Router" 1.3.6.1.4.1.6306.2.1.4.0 s
"Critical:
High Traffic" 1.3.6.1.4.1.6306.2.1.5.0 s "127.0.0.1"
1.3.6.1.4.1.6306.2.1.6.0 s
"SNMP Traffic Probe"
-->

-- The parameters in this probe are unused, but could be used to
-- set thresholds for various alarms.
<parameters>

"MinValue" = "10"
"MaxValue" = "50"

</parameters>

<snmp-device-variables>

-- TrapVariables are updated when a trap arrives.
-- This set of variables comes from the Dartware MIB
-- and would be sent in a trap from another copy of InterMapper.

trapTimeStamp, 1.3.6.1.4.1.6306.2.1.1.0, TRAPVARIABLE,
"Timestamp"
DeviceStatus, 1.3.6.1.4.1.6306.2.1.2.0, TRAPVARIABLE,

"Status"
DeviceDNS, 1.3.6.1.4.1.6306.2.1.3.0, TRAPVARIABLE, "DNS

Name of Device"
DeviceCondition, 1.3.6.1.4.1.6306.2.1.4.0, TRAPVARIABLE, "Condi-

tion String"
TrapSourceAdrs, 1.3.6.1.4.1.6306.2.1.5.0, TRAPVARIABLE, "Source

of trap"
ProbeType, 1.3.6.1.4.1.6306.2.1.6.0, TRAPVARIABLE, "Probe

that generated trap"

-- Variables from the trap packet itself

genericTrapVar, $GenericTrap, TRAPVARIABLE, "Generic

- 106 -

Chapter 4: SNMP Trap Probes

Trap"
specificTrapVar, $SpecificTrap, TRAPVARIABLE, "Specific

Trap"
timeStampVar, $TimeStamp, TRAPVARIABLE,

"Timestamp"
enterpriseVar, $Enterprise, TRAPVARIABLE, "Enter-

prise"
commStringVar, $CommunityString, TRAPVARIABLE, "Community

String"
trapOIDVar, $TrapOID, TRAPVARIABLE, "Trap OID"
agentAdrsVar, $AgentAddress, TRAPVARIABLE, "Address"
senderAdrsVar, $SenderAddress, TRAPVARIABLE, "Sender

Address"
snmpVersionVar, $SnmpVersion, TRAPVARIABLE, "SNMP Ver-

sion"
varbindCountVar, $VarbindCount, TRAPVARIABLE, "Varbind

Count"

-- Positional names of Varbind List items

vbVal1, $VarbindValue1, TRAPVARIABLE, "Value of Varbind1"
vbType1, $VarbindType1, TRAPVARIABLE, "Type of Varbind1"
vbOID1, $VarbindOID1, TRAPVARIABLE, "OID of Varbind1"
vbVal2, $VarbindValue2, TRAPVARIABLE, "Value of Varbind2"
vbType2, $VarbindType2, TRAPVARIABLE, "Type of Varbind2"
vbOID2, $VarbindOID2, TRAPVARIABLE, "OID of Varbind2"
vbVal3, $VarbindValue3, TRAPVARIABLE, "Value of Varbind3"
vbType3, $VarbindType3, TRAPVARIABLE, "Type of Varbind3"
vbOID3, $VarbindOID3, TRAPVARIABLE, "OID of Varbind3"
vbVal4, $VarbindValue4, TRAPVARIABLE, "Value of Varbind4"
vbType4, $VarbindType4, TRAPVARIABLE, "Type of Varbind4"
vbOID4, $VarbindOID4, TRAPVARIABLE, "OID of Varbind4"
vbVal5, $VarbindValue5, TRAPVARIABLE, "Value of Varbind5"
vbType5, $VarbindType5, TRAPVARIABLE, "Type of Varbind5"
vbOID5, $VarbindOID5, TRAPVARIABLE, "OID of Varbind5"
vbVal6, $VarbindValue6, TRAPVARIABLE, "Value of Varbind6"
vbType6, $VarbindType6, TRAPVARIABLE, "Type of Varbind6"
vbOID6, $VarbindOID6, TRAPVARIABLE, "OID of Varbind6"
vbVal7, $VarbindValue7, TRAPVARIABLE, "Value of Varbind7"
vbType7, $VarbindType7, TRAPVARIABLE, "Type of Varbind7"
vbOID7, $VarbindOID7, TRAPVARIABLE, "OID of Varbind7"
vbVal8, $VarbindValue8, TRAPVARIABLE, "Value of Varbind8"
vbType8, $VarbindType8, TRAPVARIABLE, "Type of Varbind8"
vbOID8, $VarbindOID8, TRAPVARIABLE, "OID of Varbind8"
vbVal9, $VarbindValue9, TRAPVARIABLE, "Value of Varbind9"
vbType9, $VarbindType9, TRAPVARIABLE, "Type of Varbind9"
vbOID9, $VarbindOID9, TRAPVARIABLE, "OID of Varbind9"
vbVal10, $VarbindValue10, TRAPVARIABLE, "Value of Varbind10"
vbType10, $VarbindType10, TRAPVARIABLE, "Type of Varbind10"
vbOID10, $VarbindOID10, TRAPVARIABLE, "OID of Varbind10"

</snmp-device-variables>

<snmp-device-display>

\B5\Information about the Trap\0P\
\4\CommunityString:\0\ $commStringVar
\4\ TimeStamp:\0\ $timeStampVar
\4\ AgentAddress:\0\ $agentAdrsVar

- 107 -

Example - Trap Viewer Probe

\4\ SenderAddress:\0\ $senderAdrsVar
\4\ GenericTrap:\0\ $genericTrapVar \3IG\(v1 only) \P0M\
\4\ SpecificTrap:\0\ $specificTrapVar \3IG\(v1 only) \P0M\
\4\ Enterprise:\0\ $enterpriseVar \3IG\(v1 only) \P0M\
\4\ TrapOID:\0\ $trapOIDVar \3IG\(v2c only) \P0M\
\4\ SnmpVersion:\0\ $snmpVersionVar \3IG\(0=SNMPv1; 1=SNMPv2c)

\P0M\
\4\ VarbindCount:\0\ $varbindCountVar \3IG\(total number of Var-

binds) \P0M\

\B5\Varbind List Items parsed by OID\0P\
\4\ TimeStamp:\0\ $trapTimeStamp \3IG\ \P0M\
\4\ Device Status:\0\ $deviceStatus \3IG\ \P0M\
\4\ Device DNS:\0\ $deviceDNS \3IG\ \P0M\
\4\Condition String:\0\ $deviceCondition \3IG\ \P0M\
\4\Trap Source Adrs:\0\ $TrapSourceAdrs \3IG\ \P0M\
\4\ Probe Type:\0\ $ProbeType \3IG\ \P0M\

\B5\Varbind List Items by Position\0P\ \3IG\(Varbind Value / Varbind
Type / Varbind OID) \P0M\
\4\ VarBindList #1:\0\ $vbVal1 / $vbType1 / $vbOID1
\4\ VarBindList #2:\0\ $vbVal2 / $vbType2 / $vbOID2
\4\ VarBindList #3:\0\ $vbVal3 / $vbType3 / $vbOID3
\4\ VarBindList #4:\0\ $vbVal4 / $vbType4 / $vbOID4
\4\ VarBindList #5:\0\ $vbVal5 / $vbType5 / $vbOID5
\4\ VarBindList #6:\0\ $vbVal6 / $vbType6 / $vbOID6
\4\ VarBindList #7:\0\ $vbVal7 / $vbType7 / $vbOID7
\4\ VarBindList #8:\0\ $vbVal8 / $vbType8 / $vbOID8
\4\ VarBindList #9:\0\ $vbVal9 / $vbType9 / $vbOID9
\4\VarBindList #10:\0\ $vbVal10 / $vbType10 / $vbOID10

</snmp-device-display>

- 108 -

Chapter 4: SNMP Trap Probes

The Dartware MIB
HelpSystems, LLC has registered the Enterprise 6306 for its own SNMP variables.
The remainder of this page shows the Dartware MIB in ASN.1 notation.

-- ***
-- DARTWARE-MIB for InterMapper and other products
--
-- May 2007
--
-- Copyright© HelpSystems, LLC
-- All rights reserved.
-- ***

DARTWARE-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, enterprises

FROM SNMPv2-SMI
DisplayString

FROM SNMPv2-TC;

dartware MODULE-IDENTITY
LAST-UPDATED "200507270000Z"
ORGANIZATION "Dartware, LLC"
CONTACT-INFO "Dartware, LLC

Customer Service
Postal: PO Box 130
Hanover, NH 03755-0130
USA
Tel: +1 603 643-9600
E-mail: support@dartware.com"

DESCRIPTION
"This MIB module defines objects for SNMP traps sent by

InterMapper."

REVISION "200705300000Z"
DESCRIPTION

"Updated descriptions to show timestamp format, correct
strings for intermapperMessage."

REVISION "200512150000Z"
DESCRIPTION

"Added intermapperDeviceAddress and intermap-
perProbeType."

REVISION "200507270000Z"
DESCRIPTION

"First version of MIB in SMIv2."

::= { enterprises 6306 }

notify OBJECT IDENTIFIER ::= { dartware 2 }
intermapper OBJECT IDENTIFIER ::= { notify 1 }

- 109 -

The Dartware MIB

intermapperTimestamp OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The current date and time, as a string, in the
format 'mm/dd hh:mm:ss'."

::= { intermapper 1 }

intermapperMessage OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The type of event - Down, Up, Critical, Alarm,
Warning, OK, or Trap - as a string."

::= { intermapper 2 }

intermapperDeviceName OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

 "The (first line of the) label of the device as
shown on a map, as a
 string."

::= { intermapper 3 }

intermapperCondition OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The condition of the device, as it would be prin-
ted in the log file."

::= { intermapper 4 }

intermapperDeviceAddress OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The device's network address, as a string."
::= { intermapper 5 }

intermapperProbeType OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS read-only

- 110 -

Chapter 4: SNMP Trap Probes

STATUS current
DESCRIPTION

"The device's probe type, as a human-readable
string."

::= { intermapper 6 }

-- For SMIv2, map the TRAP-TYPE macro to the corresponding
NOTIFICATION-TYPE macro:

--
--
-- intermapperTrap TRAP-TYPE
-- ENTERPRISE dartware
-- VARIABLES { intermapperTimestamp, intermap-

perMessage,
-- intermapperDeviceName, intermap-

perCondition }
-- DESCRIPTION
-- "The SNMP trap that is generated by InterMapper

as a notification option."
-- ::= 1

intermapperNotifications OBJECT IDENTIFIER ::= { intermapper 0 }

intermapperTrap NOTIFICATION-TYPE
OBJECTS { intermapperTimestamp, intermapperMessage,

intermapperDeviceName, intermapperCondition,
intermapperDeviceAddress, intermapperProbeType }

STATUS current
DESCRIPTION

"The SNMP trap that is generated by InterMapper as a noti-
fication option."

::= { intermapperNotifications 1 }

END

- 111 -

TCP Probes

type="tcp-script"

TCP Probes connect to the specified device and port, then execute a script that
sends and receives data from the device. InterMapper examines the responses,
and sets the device's status and condition based on the results.

For example, the HTTP probe connects to the specified port, then issues the com-
mands of an HTTP request to send data to the web server, and verifies the
received data. If the response is not as expected, the probe sets the device into
alarm or warning.

As another example, the TCP Example (Pg 137) shows another TCP-based probe
that connects to a device. It then sends the specified string, waits several seconds
and checks the response to determine the device state.

The Custom TCP probe is shown in full as an example, and can be used as the basis
for making your own probes.

Common Sections of TCP Probes

Each TCP probe follows the same general format as other probe files.

l The <header> (Pg 12) section of a command-line probe specifies the probe
type, name, and a number of other properties fundamental to the operation of
the probe.

l The <description> (Pg 17) section specifies the help text that appears in
the Set Probe window. Format the description using IMML, InterMapper's
Markup language.

l The <parameters> (Pg 18) section defines the fields presented to the user
in the Set Probe window.

Sections Specific to TCP Probes

Each TCP probe also has:

l Use the <script> section of a TCP probe to define a sequence of commands
the probe uses to interact with and query a device, and to interpret the
responses from the device. The <script> section uses the TCP Probe Script-
ing Language, a sequential language with a rich set of commands.

l The <script-output> section of a TCP probe file formats the information
retrieved from the device and sends it to the device's Status window. Format
the script output using IMML, InterMapper's Markup language.

InterMapper's TCP Probes establish a connection to a remote system, exchange
commands and receive responses, and then set the status of the device based on
those responses.

- 112 -

Chapter 5

Chapter 5: TCP Probes

This note describes how probe writers can use regular expressions and com-
parisons to parse out information from the responses.

The Overall Process

There is an annotated FTP probe in the Developer Guide. This gives an overview of
the script language and shows how it connects and logs into a FTP server, how a
script can respond to error conditions, and how to set the device's status based on
those conditions.

Regular Expressions

The TCP Script Language uses the MTCH command to compare a response string to
expected values. It can also use a regular expression to match on a part of a
string. For example:

MTCH "A([BCD]+)E"r else goto @NOMATCH
STOR "testval" "${1}"

If the incoming line contains ABDE, then the "testval" variable will contain "BD".

In the MTCH regular expression, enclosing something in parentheses turns it into a
capturing subgroup. The one or more Bs, Cs or Ds that it's matching will be stored
in the ${1} variable. If you have several capturing groups, they get stored in ${2},
${3}, etc.

For more information, see the Regular Expressions examples in Probe Cal-
culations.

Calculations in Scripts

To perform calculations within a TCP script, you should use the EVAL command. Its
argument is an expression (in quotes) that will be evaluated. It usually contains an
assignment (with the ":=" operator), that sets a variable to the result of the expres-
sion. For example:

EVAL $celsius := (($fahrenheit - 32) * 5 / 9)

will set the variable $celsius to the temperature that corresponds to the $fahren-
heit variable. The value of the $celsius variable can be used in subsequent state-
ments.

Comparisons in Scripts

You can use the EVAL statement to make comparisons between either strings or
numeric (either integer or floating point) values. To do this, write an EVAL state-
ment that compares the two values and set the result in a new variable. If the com-
parison was true, then the resulting variable will be set to 1, otherwise it will be
zero.

- 113 -

http://download.dartware.com/docs/DevGuide//Content/02-CustomProbes/commandref.html?Highlight=FTP#example

TCP Probes

Here are examples of comparing numeric and string values:

Comparing Numeric Values

EVAL $x := ($val > 50.5)
NBNE #$x #0 @greater
@less:
...
GOTO @ENDIF
@greater:
...
GOTO @ENDIF
@ENDIF:

Comparing String Values

EVAL $x := ("dog" > "cat")
NBNE #$x #0 @dog
@cat:
...
GOTO @ENDIF
@dog:
...
GOTO @ENDIF
@ENDIF:

For more information, see The Eval Macro section of Built-in Custom Probe Vari-
ables.

Simple Comparisons in Scripts

InterMapper TCP Scripts can compare two string or integer numeric values and
branch based on the results. The commands below are no longer preferred as the
EVAL statement described above is equally simple and more powerful.

The SBNE ("String Branch Not Equal") compares the two string values and
branches if they are not equal. One or both of the arguments can be variables,
expressed as ${variable-name}.

The NBNE ("Numeric Branch Not Equal") and NBGT ("Numeric Branch Greater
Than") compares two numeric values, branching on the result. The arguments to
these commands are strings and are expected to be within quotes. To convert a
string to a numeric value, place a number sign (#) before the parameter. For
example:

STOR "val1" "100"
STOR "val2" "50"
NBGT #${val1} #${val2} @exit

In this example, the string ${val1} will be converted to the numeric value 100, and
${val2} will be converted to the numeric value 50, and the branch will be taken,
because 100 is greater than 50.

Note: The NBGT, NBNE and other TCP probe commands expect integer arguments
only (with an optional + or -). A script parses up to the first non-digit character.
Thus, the value of "50.5" is 50; the remaining digits are ignored. If you wish to
compare against a fraction or floating point value, use the EVAL statement
described above.

These commands are described in detail in the TCP Probe Command Reference
topic.

- 114 -

Chapter 5: TCP Probes

The <script> Section
Use the <script> section of a TCP probe to define a sequence of commands the
probe uses to interact with and query a device, and to interpret the responses from
the device. The <script> section uses the TCP Probe Scripting Language,
(described below) a sequential language with a rich set of commands.

<script>
 ...
</script>

TCP Probe Scripting Language

Use the InterMapper TCP Probe Scripting language to create custom probes. You
can use script statements to send data to the device being tested, to examine
responses from that device, and to return a status based on the response. To view
a TCP Probe script example, see Example TCP Probe File (Pg 137).

l Script Process Flow (Pg 115)
l Script Command Format (Pg 115)
l String Argument Format (Pg 116)
l String Matching (Pg 117)
l Numeric Argument Format (Pg 118)
l Using Labels for Program Control (Pg 119)
l Using Variables (Pg 120)
l Handling Script Failures (Pg 121)
l Adding Comments (Pg 121)

Script Process Flow

Each probe has a common process flow. It sends data (as a datagram or over a
TCP connection) to the device to be tested, then examines any responses. Based
on responses, the probe sets the device status (UP, DOWN, CRITICAL, ALARM,
WARN, OK). It also sets a condition string, which contains a text description of the
state.

Script Command Format

All script command keywords have the following requirements:

l All commands are 4 letters long.
l All commands are case-sensitive.
l All commands MUST be in UPPER CASE.
l There must be white space between a command and each argument. You can
include other text (e.g. comments) after the first argument, as long as it is
separated by white space from the remaining arguments.

- 115 -

The <script> Section

Example:

The MTCH command has the format

MTCH "string" #fail

The command statement

MTCH "blah" else goto #7

is treated exactly the same as

MTCH "blah" #7

When parsing the statement, InterMapper ignores the "else goto" part. This allows
you to include comments to make the behavior of the script more obvious. This
extraneous text does not have to be in uppercase.

String Argument Format

Some commands take string arguments.

l String arguments must be enclosed in double-quotes.

Example:

"This is a string"

- 116 -

Chapter 5: TCP Probes

Special Characters

The following special characters may be included by using a backslash escape
code:

\r Carriage Return

\n Unix Linefeed

\t Horizontal Tab

\f Formfeed

\b Backspace

\v Vertical Tab

\a Alert (bell) Character

\" Double Quote

\\ Backslash

\ooo Octal Number

\xhh Hexadecimal Number

Special Character Example:

"\tThis sentence is preceded by a tab, and followed by a carriage
return and linefeed.\r\n"

String Matching

The MTCH and EXPT commands both specify a string to match. When specifying the
string, you can use regular expressions. See Wildcard Matching, below.

Controlling Case-Sensitivity

l By default, string-matching is case-sensitive.
l Place an 'i' after the final quote if you want the matching to be case-insens-
itive.

Examples:

"fred" matches only "fred".
"fred"i matches "fred", "FRED", or "FrEd".

- 117 -

The <script> Section

Wild-card Character Matching

In some cases, it is convenient to match a more general pattern. You can use
simple regular expressions to match patterns and place them into variables.

To use regular expressions in MTCH and EXPT:

l Place an 'r' after the closing quote of the match string to indicate that the con-
tents of the string is a regular expression.

l Place an 'i' after the closing quote of the match string to indicate that the
match is case-insensitive.

l An expression inside round brackets (parentheses) creates a match group and
places matched text within a numbered variable. The first variable is ${1},
the second is ${2}, and so on.

l A subsequent MTCH or EXPT command resets the variables, so you should
make a copy of the contents into another variable after a match. See the
example below.

Simple Example:

 "red"r matches "fred", "Fred", "tred", "bred", etc. It does not match "freD" unless
you include the "i" after the string.

More Complex Example:

Given the following returned data:

"var1=12 var2=1234.00 var3=45"

You match and store each data variable into an InterMapper variable:

MTCH m"var1=([0-9]+)"i else goto +1 (skip the next STOR line)

STOR "var1" "${1}"
MTCH m"var2=([0-9]+)"i else goto @BLAH
STOR "var2" "${1}"
MTCH m"var3=([0-9]+)"i else goto @BLAH
STOR "var3" "${1}"

Note: True Regex groups and the Alternate operator (|) are not supported.

Numeric Argument Format

Some commands take numeric arguments.

l Numeric arguments are formed using a # sign followed by digits.

Example:

WAIT #30

- 118 -

Chapter 5: TCP Probes

Using Numeric Arguments with the GOTO Command

In many cases, numeric arguments are used to specify the script statement num-
ber to go to when a failure occurs. A special notation allows you to express these
jumps as relative offsets.

l Include a sign ('+' or '-') after the # to express a relative offset from the cur-
rent statement.

Example:

GOTO #+2

Default Values and Script Termination

l If a command takes a numeric argument, but you do not include it, the
default value is 0.

l If you specify 0 as the statement to goto when the script fails, the script is ter-
minated with a DOWN condition.

Using Labels for Program Control

Use a label as script marker to which you can jump from elsewhere in the script.

Labels take the form:

@label_name

l Labels must be alone on a line.

Example:

@IDLE

Jumping to a Label

Use the GOTO command to jump to a label.

Example:

WAIT #30 seconds else goto @IDLE

- 119 -

The <script> Section

Using Relative Offsets to Transfer Control

You can specify an offset for the GOTO command

Specify a offset (in statements) "#+n" or "#-n" to jump forward or backward n
statements (respectively).

Example:

MTCH "${WARN Response}" else #+2

Using Variables

You can substitute variables in a script statement before the statement is pro-
cessed.

l Variables names and their default values can be defined in the <parameter>
section of the probe file, or by using the STOR, NADD, or TIME command.

l Variable names are preceded by a dollar sign ($), and are enclosed by curly
braces.

l Variable names are case-insensitive.
l See the the Built-in Variable Reference (Pg 36) topic for detailed information
on variable usage.

Example:

 ${Password} and ${password} are treated as the same variable

Built-in Macros

A macro is an expression that modifies an input string to produce another string.
The built-in macros are:

${_LINE:<line>} The first <num> characters of the last line
received.

${_BASE64:<param>} The Base-64 encoding of the string that follows
the ":".

${_CVSPASSWORD:<-
param>}

The value of <param> encoded for use as a pass-
word over the CVS pserver protocol.

- 120 -

Chapter 5: TCP Probes

Handling Script Failures

Certain script commands may fail, either because they are malformed or because
an unexpected situation occurs. For example, the script could jump to a non-exist-
ent command, it could fail to match a string it expects, or an unexpected dis-
connection could occur. In each case, the script immediately branches to a failure
handler in the script. Each command that can fail takes the statement number of
the failure statement as a numeric argument. If this number is omitted, the script
will terminate with a "DOWN" status.

Example:

In the following example, the MTCH command succeeds if the incoming line of data
contains "220". If the command fails, the script branches to statement 3.

MTCH "220" ELSE #3

Note: If the script is idle for too long, it may go to a special "idle" handler. See the
WAIT command (Pg 133) for more details.

Adding Comments to your Script

There are two ways to add comments to your script:

l Add text between or after arguments to a script command.
l Add a comment using the InterMapper probe file comment format.

Adding text within a command line

You can add text between arguments in a command line, as well as adding text
after the line.

Examples:

The following statements all have exactly the same effect:

MTCH "331 " #14
MTCH "331 " else #14
MTCH "331 " else goto -1- #14 -- Unexpected or unknown response to
USER command

- 121 -

The <script-output> Section

Adding text in Comment format

Use the HTML comment syntax to add comments to a probe files. Place comments
anywhere in a probe file. HTML comment syntax can be simplified by following this
rule:

l Begin a comment with "<!--", end it with "-->", and do not use "--" within
the comment.

Example:

<!-- This text is treated as a comment, and will be ignored -->

The <script-output> Section
The <script-output> section of a TCP probe file formats the information
retrieved from the device and sends it to the device's Status window. Format the
script output using IMML, InterMapper's Markup language.

- 122 -

Chapter 5: TCP Probes

TCP Probe Command Reference
This is a list of commands defined in the InterMapper TCP Probe Scripting Lan-
guage. For an example of a custom probe script, see the Annotated Example of the
FTP (Login) Script (Pg 134).

Device I/O Commands

The following commands operate on a device by sending data to the device or by
reading one or more lines from the input (from the connection to the device being
tested). Each command that reads a device compares its string to the current line -
which is the most recently-read line from the connection. If there is no current line
(for example, if a SEND command has been executed), these statements will read
one or more lines to get the current line.

l EXPT "string" #fail (Pg 127) - Searches incoming lines for the specified string.
l MTCH "string" #fail (Pg 129) - Searches the next incoming line for the spe-
cified string.

l SKIP "string" #fail (Pg 132) - Ignore all incoming lines containing the spe-
cified string.

l DISC #discfail (Pg 126) - Jump to a specified line number if the probe is sud-
denly disconnected.

l CONN #timeout ["TELNET"]["SECURE"] (Pg 126) - Specifies the connect
timeout of the probe and whether to process Telnet options.

l RCON (Pg 131) - reconnects to the specified server and port.
l PORT #port_num #connect_timeout (Pg 130) - No longer required (the
remote port number is now a separate parameter in the configuration dialog.)

l LINE [ON | OFF] (Pg 128) - Specifies whether the script should read incoming
data as lines or as raw data.

l NEXT (Pg 130) - Clears the input buffer so that subsequentMTCH commands
will operate on newly-received information.

l SEND "string" (Pg 131) - Sends the specified string to a remote device.
l BRCV {BER sequence} (Pg 125) - Receive TCP data and decode from BER
format into a local format.

l BSND {BER sequence} (Pg 125) - Encode local data in BER format and send.
(See LDAP probes for examples, syntax.)

Commands that control script flow

The following commands control the order of operations in the script.

l CHCK "string" #fail (Pg 125) - Determines whether "string" is non-empty.
l DONE status ["message"] (Pg 126) - Terminates a script with a specified con-
dition.

l EXIT (Pg 127) - Terminates a script with the condition specified previously by
STAT.

l FAIL (Pg 128) - specifies the line # to jump to if a CONN command fails to con-
nect.

l GOTO #statement (Pg 128) - Branches immediately to the specified state-
ment number.

l NBGT #arg1 #arg2 #line (Pg 130) - (Numeric Branch Greater Than)
branches to #line if #arg1 is greater than #arg2.

- 123 -

TCP Probe Command Reference

l NBNE #arg1 #arg2 #line (Pg 130) - (Numeric Branch Not Equal) Compares
two numeric arguments and branches to the indicated #line if they are not
equal.

l SBNE "arg1" "arg2" #line (Pg 131) - (String Branch Not Equal) Compares two
string arguments and branches to the indicated #line if they are not equal.

l STAT status ["message"] (Pg 132) - Specifies the status condition of a script
when it ends.

l WAIT #secs #idlefail #discfail (Pg 133) - Specifies the number of seconds the
probe waits for a response.

String processing commands

The following commands process and manipulate strings.

l EVAL $result := expression (Pg 127) - Assigns the evaluated value of expres-
sion to ${result}

l STOR "variable" "string" (Pg 132) - Stores the string into the variable named
"variable"

l SCAT "variable1" "variable2" #fail (Pg 131) - Concatenates variable1 and vari-
able2, placing the resulting string in variable1.

l NADD "variable" #number (Pg 129) - (Numeric Add) Adds a numeric value to
a variable.

Commands that measure time

l STRT (Pg 133) - Starts a millisecond timer that InterMapper can use to
determine the elapsed time for some event.

l TIME "variable" (Pg 133) - Sets the named variable to the current number of
milliseconds from the most recent STRT command.

l WAIT #secs #idlefail #discfail (Pg 133) - Specifies the number of seconds the
probe waits for a response.

- 124 -

Chapter 5: TCP Probes

Probe Command Details - Alphabetical

BRCV {BER Sequence}

Receive TCP data and decode from BER format into a local format, checking for
expected tags and values as indicated. BER stands for "Basic Encoding Rules" for
ASN.1. See LDAP probes for examples, syntax.

Documentation of BER format is beyond the scope of this manual.

InterMapper-specific BER syntax information you need is:

l { - starts a sequence (sequences may be nested)
l } - ends a sequence
l [- starts a hexadecimal tag
l] - ends a hexadecimal tag
l # - indicates a literal number follows
l " - begins and ends a literal string

Remember that ${} is the variable format. Don't confuse these the sequence start
and end characters "{}" with the variable delimiters.

Example:

BRCV { #1, [61]{ [0A]#ENUM, "", "" } } else @PARSE_
ERROR

BSND {BER sequence}

Encode local data in BER format and send. BER stands for "Basic Encoding Rules"
for ASN.1. See LDAP probes for examples and syntax.

Documentation of BER format is beyond the scope of this manual. See Inter-
Mapper-specific BER syntax (Pg 125) above for the information you need to use
BSND.

Example:

BSND { #1, [60]{ #3, "${Bind Name}", [80]"${Bind Pass-
word*}"} }

CHCK "string" #fail

Use the CHCK command to determine whether "string" is non-empty. If the string
is empty, the script jumps to the specified #fail line.
This command can be used to construct scripts whose control changes depending
on whether an optional parameter is supplied.
Possible failures: None

- 125 -

TCP Probe Command Reference

CONN #timeout ["TELNET"]["SECURE"]

Use the CONN command to specify the connect timeout of the probe and whether
to process Telnet options.

If you are going to use the CONN command, itmust be the first statement of the
script. When the script executes, the parameters of the CONN statement determ-
ine the options InterMapper uses to connect to the remote computer.

#timeout: The number of seconds to wait while trying to connect before giving
up.

"TELNET": If the second parameter of the CONN command is "TELNET" (including
the quotes), then the connection is created in a mode where the TCP stream auto-
matically processes and negatively acknowledge any incoming Telnet options. This
allows a Telnet probe to ignore the telnet options and work in simple line-by-line
mode for the remainder of the script.

SECURE To create an SSL connection, place the word SECURE at the end of the
line.

SECURE:ADH Use anonymous Diffe-Hellman key exchange.

SECURE:NO_TLS TLSv1 is turned off when making a secure connection. The
HTTPS (SSLv3) probe uses this option.

Possible Failures: None

DISC #discfail

Use the DISC command to cause the script to jump to a specified line number if
the probe is suddenly disconnected. You can use this command to identify scripts
that fail because of a TCP disconnection.

The script's disconnect line can also be set using the third parameter to the WAIT
command.

DONE status ["message"]
Use the DONE command to terminate the script with the specified condition, which
must be one of

[OKAY | WARN | ALRM | DOWN]

The optional "message" parameter lets you provide more detail about the con-
dition. The status values for the DONE command must be in UPPERCASE.
Example:

DONE ALRM "[HTTP] 500 Response received."

This example sets the status of the device to ALRM. The condition of the device
(which is displayed in the device's Status window and the Device List window) is

- 126 -

Chapter 5: TCP Probes

set to "[HTTP] 500 Response received." to give the user an indication of the reason
for the alarm.
Possible Failures: None.
Tip: If the final statement of your script is not a DONE command, the script auto-
matically terminates with a "DONE OKAY" status.
EVAL $result := expression

Assigns a value to the variable in ${result} based on expression.

The expression can use any operators or functions defined in Probe Calculations,
allowing you to perform variable assignments, arithmetic calculations, relational
and logical comparisons, as well as use built-in functions to perform bitwise, round-
ing and mathematical operations. You can also perform operations on strings using
regular expressions.

Examples:

-- Simple Assignment
EVAL $msgstring := $otherstring

--Simple subtraction of numeric values
EVAL $newopen := $fileopen - $prevfileopen

--Use of function and conditional logic
EVAL $prevtest := defined("test") == 1 ? $test : 0

--Use of regular expression
EVAL $msg_part := ($msg =~ "(.*)| *([^|]+)$")

Numerous examples that use the EVAL command can be found in the built-in TCP
probes.

Note: The EVAL command used in TCP probes should not be confused with the
${eval} macro (Pg 42), available the output sections of command-line, SNMP,
and TCP probes.

EXIT

Use the EXIT command to terminate the script, setting the status and condition
string to whatever is specified by a previous STAT command.

EXPT "string" #fail

Use the EXPT command to "EXPecT", or search for the specified string in any num-
ber of incoming lines.

l If the string is found, the script falls through to the next statement.
l If the string is not found, the script jumps to the statement specified in the
#fail parameter.

Notes:
EXPT is identical to MTCH, except that:
- MTCH fails if the *next* line or block does not match what is specified.
- EXPT keeps going until it finds a line or text block that matches what is

- 127 -

TCP Probe Command Reference

specified.

Both EXPT and MTCH can use regular expressions. For more information, see
String Matching (Pg 117).

Example:

EXPT "220 " #14

Possible Failures:

The EXPT command can fail if the expected text is not received before the con-
nection closes. In that event, the script jumps to the statement specified by #fail.

However, if the timeout specified by a previous WAIT command expires before the
connection closes, the script jumps to the #idlefail line specified by theWAIT com-
mand instead.

FAIL #

Specify the line number to jump to if the probe fails to connect. The FAIL command
must follow immediately after a CONN command line.

Possible Failures:

If the statement number is out of bounds, the script terminates with a DONE com-
mand and DOWN status.

GOTO #statement

Use the GOTO command to branch immediately to the specified statement num-
ber.

Possible Failures:

If the statement number is out of bounds, the script terminates with a DONE com-
mand and DOWN status.

LINE [ON | OFF]

Use the LINE command to specify whether the script should read incoming data as
lines or as raw data.

Notes:

l By default, the script reads in LINE ON mode. That is, the incoming data is
read until it is terminated by a CR-LF or just a plain LF, and then the line is
processed.

l If you issue a LINE OFF command, data is read without regard for line delim-
iters.

Reading raw data is useful for scanning HTTP data since web pages are not
necessarily broken into lines. InterMapper's TCP probe has a maximum line

- 128 -

Chapter 5: TCP Probes

buffer of 4096 characters, so if lines are longer than that, they may be
treated as separate lines.

Tip: Once you've matched some data in LINE ON mode, you shouldn't match any
more because your position in the buffer is not restored and you may miss some-
thing.

Possible Failures: None

MTCH "string" #fail

Use the MTCH command to "MaTCH", or search for the specified string in the next
incoming line. If found, the script falls through to the next statement.

Notes:
MTCH is identical to EXPT, except that:
- MTCH fails if the *next* line or block does not match what is specified.
- EXPT keeps going until it finds a line or text block that matches what is specified.

Both EXPT and MTCH can use regular expressions. For more information, see
String Matching (Pg 117)

Example:

MTCH "331" #16

Possible Failures:

If the next incoming line does not contain the desired string, or if the connection
closes before the next line can be read, this script fails. In either case, the script
jumps to the statement specified by #fail.

If the idle timeout expires instead, the script jumps to the #idlefail line specified
by the previousWAIT command.

NADD "variable" #number

The NADD (Numeric Add) command adds a numeric value to a variable. The vari-
able is looked up and converted to a numeric value. The number is added, and the
result is converted back to a string and placed into the variable.

Example:

NADD "fred" #3
adds 3 to the value of the variable fred. If fred contains "3", the res-
ult will be "6". If fred contains "golf", the result will be "3" (because
the conversion from a string to a number yields zero).

If the number is missing, the script adds zero to the value.

Possible Failures: None.

- 129 -

TCP Probe Command Reference

NBGT #arg1 #arg2 #line

Use the NBGT (Numeric Branch Greater Than) command to branch to #line if
#arg1 is greater than #arg2.

Example:

NBGT #${arg1} #${arg2} @exit
branches to the label @exit if the numeric ${arg1} is greater than
${arg2}.

Note: Use the leading # to force InterMapper to treat the arguments as numeric
values.

Possible Failures: None.

NBNE #arg1 #arg2 #line

Use the NBNE (Numeric Branch Not Equal) command compares the two numeric
arguments, and branches to the indicated #line if the arguments are not equal.

Example:

NBNE #${arg1} #${arg2} @exit

branches to the label @exit if the numeric ${arg1} is not equal to ${arg2}.

Possible Failures: None.

NEXT
The NEXT command clears the input buffer (represented by the ${LINE} variable)
so that subsequentMTCH commands will operate on newly-received information.
Notes:

l The SEND command incorporates an implicit NEXT command.
l The NEXT command has no effect if input is not in LINE mode.

Possible Failures: None.
PORT #port_num #connect_timeout

Deprecated This command is no longer required in a script because the remote
port number is now a separate parameter in the configuration dialog.

If present, this command must be in the first statement of the script. The first para-
meter specifies the default TCP port to connect to on the remote computer. The
#connect_timeout parameter is the number of seconds to wait for the probe to con-
nect.

Possible Failures: None

- 130 -

Chapter 5: TCP Probes

RCON

Takes no parameters.

See the Barracuda probes for examples and syntax.

Possible Failures: None

SBNE "arg1" "arg2" #line

The SBNE (String Branch Not Equal) command compares the two string argu-
ments, and branches to the indicated #line if the arguments are not equal.

Example:

SBNE "${arg1}" "${arg2}" @exit
branches to the label @exit if the string ${arg1} is not equal to
${arg2}.

Possible Failures: None.

SCAT "variable1" "variable2" #fail

The SCAT (String ConCATenate) command concatenates variable1 and variable2
and places the resulting string in variable1.

Example:

STOR "name" "Fred"
sets the variable ${name} to the string "Fred"

SCAT "name" "Flintstone" @TOO_LONG
sets the variable ${name} to the value "FredFlintstone"

Possible Failures: If the sum of the lengths of the strings exceeds 65,535 char-
acters, the SCAT command will fail, and transfer to the @TOO_LONG label.

SEND "string"

Use the SEND command to send the specified string to the remote device.

To send a line of data, you must explicitly specify the CR-LF using the quoting con-
vention.

Example:

SEND "Greetings!\r\n"
transmits the data "Greetings!" followed by a CR-LF.

Possible Failures: This command can't fail. If the data can't be sent because of a
network failure or device failure, the failure shows up in a subsequent EXPT or
MTCH command.

- 131 -

TCP Probe Command Reference

SKIP "string" #fail

Use the SKIP command to ignore all incoming lines containing the specified string.
The script falls through to the next statement when an incoming line does not con-
tain the string.

Possible Failures:

If the connection closes unexpectedly, the script jumps to #fail.
If theWAIT timeout (as defined by theWAIT command) expires, the script jumps
to #idlefail.

STAT status ["message"]

Use the STAT command to specify the status of the device when the script ends.
This command does not terminate the script. You can also specify a condition
string as the second argument.

The status must be one of

[OKAY | WARN | ALRM | DOWN | CRIT]

Example:

STAT ALRM "[HTTP] 500 Response received."

Note: A subsequent STAT or DONE command overrides the value set by this com-
mand.

STOR "variable" "string"

The STOR command stores the string into the variable named variable. If you wish
to set a variable to a numeric value, enclose the number in quotes ("). Subsequent
parts of the script can refer to this variable as ${variable}.

Examples:

STOR "fred" "foobar"
sets the variable fred to the text string foobar. Subsequent parts of the
script can refer to this variable as ${fred}.

STOR "fred" "3"
sets the variable fred to the string value "3".

Note: String variables can be any length up to 65,535 characters.

Possible Failures: None.

- 132 -

Chapter 5: TCP Probes

STRT

The STRT command starts a millisecond timer that InterMapper can use to determ-
ine the elapsed time for some event. See the TIME command.

Example:

STRT Starts the timer.

Possible Failures: None.

TIME "variable"

The TIME command sets the named variable to the current number of milliseconds
from the most recent STRT command.

Example:

TIME "connecttime"
sets the variable connecttime to the number of milliseconds since the
most recent STRT command. If there was no previous STRT com-
mand, the variable will be set to zero.

Possible Failures: None.

WAIT #secs #idlefail #discfail

Use theWAIT command to specify the number of seconds the probe waits for a
response.

Parameter 1 - #secs: The number of seconds to wait for a response. If you do
not include aWAIT command in your script, the default timeout 60 seconds is
used.

Parameter 2 - #idlefail: If present, the script jumps to this line number if the
probe is idle for the specified number of seconds. This idle handler supercedes the
error line number specified by the EXPT, SKIP, or MTCH commands. If the #idle-
fail parameter is not included, the script branches to the failure handler of the cur-
rent command. [link]

Parameter 3 - #discfail: If present, the script jumps to this line if the probe is
unexpectedly disconnected. This allows you to identify scripts that fail because of a
TCP disconnection.

Possible Failures: None

Tip: You should specify all three parameters in theWAIT command.

- 133 -

TCP Probe Command Reference

Annotated Example of the FTP (Login) Script

01) PORT #21 (default tcp port)
02) WAIT #30 seconds
03) EXPT "220 " else goto -1- #14
04) SEND "USER ${User ID}\r\n"
05) MTCH "331" else goto -2- #16
06) SEND "PASS ${Password}\r\n"
07) MTCH "230" else goto -3- #20
08) SEND "NOOP\r\n"
09) MTCH "200" else goto -4- #24
10) SEND "QUIT\r\n"
11) EXPT "221" #+1 (i.e. can't fail)
12) DONE OKAY
13)
14) DONE DOWN "[FTP] Unexpected greeting from port ${_REMOTEPORT}.
${_LINE:50})" -1-
15)
16) MTCH "500" else goto #+2 -2-
17) DONE ALRM "[FTP] Port ${_REMOTEPORT} did not recognize the 'USER'
command."
18) DONE ALRM "[FTP] Unexpected response to USER command. (${_
LINE:50})"
19)
20) MTCH "530" else goto #+2 -3-
21) DONE WARN "[FTP] Incorrect login for \"${User ID}"."
22) DONE ALRM "[FTP] Unexpected response to PASS command. (${_
LINE:50})"
23)
24) DONE ALRM "[FTP] Unexpected response to NOOP command. (${_
LINE:50})"

Explanation of the Script

01) PORT #21 (default tcp port)
02) WAIT #30 seconds

Line 1: The PORT command at the beginning of the script specifies the default TCP
port number for FTP, port 21.

Line 2: The WAIT command specifies that if the script doesn't hear responses
back within 30 seconds, it fails.

03) EXPT "220 " else goto -1- #14

Line 3: FTP servers normally send one or more "220" lines to greet new FTP con-
trol connections. Our script scans the incoming lines for "220 ".

Note the space following the 220; we don't want to match an incoming "220-"; the
incoming dash indicates there are still more 220 lines to be read -- we only want to
match the final 220 line.

- 134 -

Chapter 5: TCP Probes

If the script fails to find "220 " before the connection closes or within 30 seconds,
the script branches to statement 14. The "-1-" is an arbitrary label used to make
the destination of the branch more easily visible.

The string "else goto -1-" has no function (except readability) in the script com-
mand text; this statement could have been written equally well as EXPT "220 " #14
. Note that statement #14 also has comment of "-1-" to show it is the destination.

04) SEND "USER ${User ID}\r\n"

Line 4: Send the FTP USER command. With this command, we send the user ID
specified by the user, e.g. "anonymous". Note that you must include the carriage-
return and line-feed at the end of the string sent, to denote the line ending.

05) MTCH "331" else goto -2- #16

Line 5: The script looks for the 331 response to the USER command.

If something else arrives, the script jumps to statement 16. Unlike the EXPT com-
mand, the MTCH command fails immediately if the next line doesn't contain the
required text.

[...] (Skipping down to statement 16).

16) MTCH "500" else goto #+2 -2-
17) DONE ALRM "[FTP] Port ${_REMOTEPORT} did not recognize the
\"USER" command."
18) DONE ALRM "[FTP] Unexpected response to USER command. (${_
LINE:50})"

Line 16: Statement 16 is executed only if statement 5 fails; that is, if an unex-
pected response to the USER command is received. The response is checked to see
if it matches "500", which would indicate that the command isn't supported. This is
possible if you accidentally try to pass the USER command to a TCP service other
than FTP.

If the server's response matches "500", the script is terminated with the device in
the ALARM status (in statement 17). The message reports that the server did not
recognize the USER command.

If the server's response does not match "500", the script skips two lines to state-
ment 18. This statement terminates the script with the ALARM status and uses the
${LINE" } macro to include the first 50 characters of the response line in the mes-
sage.

- 135 -

Measuring TCP Response Times

Measuring TCP Response Times
You can measure the response time of a device as it is being tested by a
TCP probe. Times are measured in milliseconds.

With TCP Probes, InterMapper measures both the time to establish the connection
and the time for various portions of an interaction. These times can be charted and
logged.

Time Measurement Probe Variables

TCP Timers are:

Connection initiation
interval

${_connect} Records the time required to estab-
lish a connection.

Connection duration
interval

${_active}
Records the duration from the con-
nection request until the end of the
end of the script.

TCP Script Commands

InterMapper supports two commands for measuring intervals during a script.
These are:

STRT Starts the probe's custom timer.

TIME var-
name

Sets the variable named ${varname} to the milliseconds elapsed
since the customtimer was started.

The <script-output> Section

Use the optional <script-output> section to display the results of custom TCP
probes. The data in this section appears in a Status window when you click and
hold on the device. The format of this section is the same as the <snmp-device-
display>, described in Customized Status Windows (Pg 32).

Use the ${_connect} and ${_active} variables, as well as any variables set with
the TIME varname command, in the <script-output> section of the Status win-
dow.

A Note on Accuracy

InterMapper uses different techniques to measure the round-trip times of various
probes.

l Pings (ICMP and AppleTalk echoes) - These are the most accurate tim-
ings. InterMapper detects the arrival of the Ping response at the moment it
arrives. Thus, it can compute the response times with millisecond accuracy.

l Other UDP-based and TCP-based probes - These timings are computed
by InterMapper as it does its normal polling. Thus, the measured time can be
affected slightly by the such things as the number of devices probed and other
various other tasks, as they may affect how long it takes InterMapper to
execute a single round of polling.

- 136 -

Chapter 5: TCP Probes

Example TCP Probe File
The following is the HelpSystems-provided probe for the Custom TCP script.

<!--
Custom TCP (com.dartware.tcp.custom)
Copyright© HelpSystems, LLC.
Please feel free to use this as the basis for new probes.
-->

<header>
type = "tcp-script"
package = "com.dartware"
probe_name = "tcp.custom"
human_name = "Custom TCP"version = "1.2"
address_type = "IP"
port_number = "23"

</header>

<description>
\GB\Custom TCP Probe\P\
This probe lets you send your own string over the TCP connection and
set the
status of the device depending on the response received. There are
six
parameters which control the operation of this probe:
\i\String to send\p\ is the initial string sent over the TCP con-
nection. This
could be a command which indicates what to test, or a combination of
a command
and a password. The string is sent on its own line, terminated by a
CR-LF.

\i\Seconds to wait\p\ is the number of seconds to wait for a
response. If no
response is received within the specified number of seconds, the
device's status
is set to DOWN.

\i\OK Response\p\ is the substring which should match the device's
"ok
response". If it matches the first line received, the device is repor-
ted to have
a status of OK.

\i\WARN Response\p\ is the substring which should match the device's
warning
response.

\i\ALRM Response\p\ is the substring which should match the device's
alarm
response.

\i\DOWN Response\p\ is the substring which should match the device's
down
response.

If InterMapper cannot connect to the specified TCP port, the device's
status is
set to DOWN.

- 137 -

Example TCP Probe File

</description>

<parameters>
"String to send" = ""
"Seconds to wait" = "30"
"OK Response" = ""
"WARN Response" = ""
"ALRM Response" = ""
"DOWN Response" = ""

</parameters>

<script>
CONN #60 (connect timeout in secs)
SEND "${String to send}\r\n"
WAIT #${Seconds to wait} else goto @IDLE
EXPT "."r else goto @DISCONNECT
MTCH "${OK Response}" else #+2
DONE OKAY "[Custom] Response was \"${_LINE:50}\"."
MTCH "${WARN Response}" else #+2
DONE WARN "[Custom] Response was \"${_LINE:50}\"."
MTCH "${ALRM Response}" else #+2
DONE ALRM "[Custom] Response was \"${_LINE:50}\"."
MTCH "${DOWN Response}" else #+2
DONE DOWN "[Custom] Response was \"${_LINE:50}\"."

@IDLE:
DONE DOWN "[Custom] Did not receive a line of data within ${Se-

conds to wait}
seconds. [Line ${_IDLELINE}]"

@DISCONNECT:
DONE DOWN "[Custom] Connection disconnected before a full line

was received."
</script>

<script-output>
 \B5\Custom TCP Information\0P\
 \4\Time to establish connection:\0\ ${_connect} msecs
 \4\Time spent connected to host:\0\ ${_active} msecs
</script-output>

- 138 -

Command Line Probes

type="cmd-line"

InterMapper provides the ability to run a command-line probe, a script or program
(written in perl, C, C++, or your favorite language.) Your program's return value
becomes the device's status on the InterMapper map.

Common Sections of a Command-Line Probe

Each command-line probe follows the same general format as other probe files,
sharing these common sections:

l The <header> (Pg 12) section of a command-line probe specifies the probe
type, name, and a number of other properties fundamental to the operation of
the probe.

l The <description> (Pg 17) section specifies the help text that appears in
the Set Probe window. Format the description using IMML, InterMapper's
Markup language.

l The <parameters> (Pg 18) section defines the fields presented to the user
in the Probe Configuration window.

Sections Specific to Command-line Probes

Each command-line probe also has:

l The <command-line> (Pg 142) section - defines the command-line, spe-
cifying the path to the executable, the command to execute, and any argu-
ments to the command.

l The <command-exit> (Pg 143) section - controls how the device's state is
set, based on the results of the command.

l The <command-display> (Pg 143) section - controls what appears in the
device's Status window.

InterMapper uses the information in the probe's <command-line> section to invoke
the program or script and pass arguments to it. InterMapper sets the device's
status based on the return code from the program or script. In addition, any data
written to the script's standard output file is used as the device's reason string, and
appears in the status window. The total amount of data that can be returned by the
program, including return code, reason string, and additional values, is 64k.

InterMapper's command-line probes are similar to Nagios® plugins. You can
see the standard set of Nagios plugins. Many vendors and individuals have created
their own Nagios plugins. You will have to download the Nagios plugins and build/-
compile them yourself.

If you wish to develop your own command-line probes, we recommend you follow
the developer guidelines for Nagios. This will result in probes/plugins that work for
both InterMapper and Nagios.

- 139 -

Chapter 6

http://www.nagios.org/
http://sourceforge.net/project/showfiles.php?group_id=29880
http://nagiosplug.sourceforge.net/developer-guidelines.html

Chapter 6: Command Line Probes

For more information about InterMapper and Nagios Plugins, see the Nagios Plu-
gins page (Pg 152).

See Command Line Probe Example (Pg 149) for a sample shell script and cor-
responding probe.

The <tool> section - embedding a companion script

You can also embed script code directly in a probe. This provides an easy way to
deliver a command-line probe and a script that it runs in a single probe file, ensur-
ing that the version of the script matches the version of the probe. WMI probes
provide a number of good examples of companion scripts. For more information,
see The <tool> Section (Pg 144).

Command Line Script API

When InterMapper invokes a command line program or script, it passes para-
meters on the command line. Use the path, cmd, and arg properties of the <com-
mand-line> section to specify the script or other executable to invoke, and any
arguments to the command. As the script developer, you are responsible for pars-
ing the arguments.

The script can return three kinds of information to InterMapper:

1. The operating system return code, or exit code, is used to indicate the
success/failure/severity. This will be handled by the <command-exit> sec-
tion of the probe file.

2. The script can optionally return additional values, such as measurements, dis-
covered during execution. It does this by writing to the script's stdout. You
return these values as a comma-separated list enclosed in "\{" ... "}" char-
acters.These values can then be handled as variables in the probe's <com-
mand-display> section. The values themselves are name-value pairs in the
form:

<name> := <value>

3. The script can also return a reason string that will be used to explain the
device's condition. You specify the reason string by writing to the script's
stdout. This text should follow the closing "}" of any additional values.

Example: The following output from a script sets two values to the probe:
$rtt and $hop, and sets the device's reason string to "Round-trip time is very
high".

\{ $rtt := 5, $hop := 2 } Round-trip time is very high

You can do a significant amount when writing to stdout, using the ${^stdout} vari-
able. For more information, see The ${^stdout} variable and the Reason string
(Pg 44).

- 140 -

Command Line Probes

Installing a Command-line Probe

Once you have created your probe, you need to install it before you can test it.

To install and use a command-line probe:

1. If you are using an external script or other executable, create the program,
and make it runnable. If it's a Perl, Python, or other script, set the per-
missions so that it can run from the command line. If it's written in C, C++,
or other non-interpreted language, compile the source and then place the res-
ulting binary in an appropriate directory. (See the path (Pg 139) discussion
below.)
Note: If you embed a script in the <tool> section of the probe, permissions
are set by InterMapper when it writes the script to the Tools directory (when
you import or reload the probe.)

2. Create a Command-line probe that references the executable program or con-
tains the script in the <tool> section.

3. Import or reload the probe (from the Set Probe window) to make it available.

See Command Line Probe Example (Pg 149) for a sample shell script and cor-
responding probe.

Passing parameters to a command-line probe

Pass arguments to the command line into the probe by accessing the parameter
variables with ${parametername}. The named arguments can be added to the com-
mand line.

For example, use ${Timeout} for an parameter as follows:

<parameters>
 Timeout = "7"
</parameters>

The arg variable could be set as follows:

arg = "-H ${Timeout}"

Note: Depending on the nature of the parameters you are passing, you may want
to pass the parameters through STDIN, as described below.

Sending Data to STDIN

Using the ps command on Unix systems, or using the Task Manager or other utility
programs on Windows systems, it is possible to see the command line arguments.
This represents a security vulnerability. Use the input property of the <command-
line> section to pass sensitive data to STDIN, removing this vulnerability. See
Sending Data to STDIN (Pg 143) in The <command-line> Section for a detailed
example.

- 141 -

Chapter 6: Command Line Probes

The <command-line> Section
The <command-line> section allows you to specify the information needed to
execute the commands for the probe. Use the following variables:

l path - specify the path to the executable script/command.
l cmd - specify the actual script/command.
l arg - specify the arguments to be passed to the script/command.
l input - specify information to pass to STDIN to the script/command.

The Properties of the <command-line> Section

l Use the path property to specify the directories in which InterMapper should
look for the executable to run as a probe. This is the only path InterMapper
will use; the PATH environment variable is not used. The path property fol-
lows the conventions for the PATH environment variable on the system host-
ing InterMapper. The example below is for Unix or Mac OS X. A path for
Windows would use "\" instead of "/" and ";" instead of ":".

Notes:
- If no path is specified, InterMapper Settings/Tools is used as the path.
- On Unix systems, it might be possible to see the command line arguments in
the 'ps' listing. This represents a security vulnerability. Use the input vari-
able to pass values to stdin, removing this vulnerability. For more inform-
ation, see Sending Data to STDIN (Pg 143), below.

l Use the cmd property to specify the executable you wish to run. In the
example below, this is "check_ping". Note that you need to specify the exact
name, including any extensions such as .exe or .cmd. You may also specify
arguments as part of the cmd property if you'd like.

l Use the arg property to specify arguments to the executable. This may be
instead of or in addition to specifying them in the cmd property. We could
have just as easily written our sample cmd property as a command and argu-
ment, like this:

<command-line>
 path = ""
 cmd = "check_ping"
 arg = "-H ${ADDRESS} -w 100,10% -c 1000,90%"
</command-line>

l Use the input property to pass information to STDIN. See Sending Data to
STDIN, below.

Note the use of the "${ADDRESS}" macro. This is replaced with the address
given when the device was created. You can also use the "${PORT}" macro to
indicate the port given when the device was created.

- 142 -

The <command-exit> Section

Sending Data to STDIN

Using the ps command on Unix systems, or using the Task Manager or other utility
programs on Windows systems, it is possible to see the command line arguments.
This represents a security vulnerability. Use the input variable to pass sensitive
data to stdin, removing this vulnerability.

This mechanism provides a less visible channel for sensitive communication to a
probe script. Usernames, passwords, and SSL pass-phrases are likely candidates
for this technique.

Example:

<command-line>
 cmd = "executable"
 input = "${User} ${Password}"
</command-line>

The <command-exit> Section
The <command-exit> Section

The <command-exit> section allows you to specify which results from the com-
mand indicate the five InterMapper device states. The states are:

l down
l critical
l alarm
l warning
l okay

For each state, you need to indicate what item InterMapper should examine and
what its value should be to result in that state being set. At the moment, the only
thing InterMapper can look at is the exit code, which is indicated with ${EXIT_
CODE}. So, in the example below, the line:

down: ${EXIT_CODE} = 2

means, "To determine if the device is down, examine the exit code from the com-
mand; if it is 2, the device is down." If none of the criteria for the states you have
defined are true, then the device is set to "unknown".

The <command-display> Section
The <command-display> section displays variables in the device's Status window
using the same form as the output section of other probe types. If the plugin
returns a non-integer value, you should use the ${chartable:...} macro to display
digits to the right of the decimal point. As with other probe types, you format the
appearance of the output using IMML, InterMapper's markup language.

See Command Line Probe Example (Pg 149) for a sample shell script and cor-
responding probe.

- 143 -

Chapter 6: Command Line Probes

The <tool> Section
Use the <tool> section of a command-line probe to embed a script's code directly
into a command-line probe. The <tool> section provides a convenient way to main-
tain the probe and the script in a single file.

<tool:scriptname>
[script code]

</tool:scriptname>

Replace scriptname with the executable you want to use for the script.

Replace [script code] with the code of the script.

What happens when you load a probe with a <tool> section?

When the InterMapper server starts or when you import or reload a probe, if a tool
section appears for a probe, InterMapper creates a subdirectory of Tools with the
canonical name of the probe and writes the script to that subdirectory, using
scriptname as a file name.

If a subdirectory of that name already exists, all non-hidden files are deleted
before the script is written out. For this reason, you should not edit scripts directly
in the subdirectories of the Tools directory, since they are overwritten when
probes are reloaded.

For example, given the trivial example of a command-line probe where the canon-
ical name is com.dartware.cmdline.test, where the cmd clause in the <command-
line> section is:

cmd="python test.py"

or, using the ${PYTHON} macro:

cmd="${PYTHON} test.py"

and the tool section is:

<tool:test.py>
Trivial example
print "okay"
raise SystemExit, 0

</tool:test.py>

When InterMapper starts or reloads probes, a subdirectory of Tools named
com.dartware.cmdline.test is created if it doesn't exist, and (in this case) a file
named "test.py" is written into it, containing the text between <tool:test.py>
and </tool:test.py>.

The WMI probes provide a number of good examples of this feature.

- 144 -

The <tool> Section

Calling external scripts and other executables

While using the <tool> section is recommended, it is optional. You can call an
external script or other executable by providing the correct path to it in the cmd
property of the <command-line> section of the probe. If you provide a paths to mul-
tiple directories in the path parameter, InterMapper looks in the specified dir-
ectories for the executable. The <tool> section is appropriate only for scripts, not
for compiled programs.

Python Example

<!--
check_connect
(com.dartware.commandline.check_connect.txt)
Copyright© HelpSystems, LLC. All rights reserved.
-->

<header>
type = "cmd-line"
package = "com.dartware"
probe_name = "commandline.check_connect"
human_name = "Check Connect"
version = "1.1"
address_type = "IP"
display_name = "Miscellaneous/Test/Check Connect"

</header>

<description>
\GB\Check for connect\p\

This probe checks to see if you can connect to the given address
and port.
</description>

<parameters>
"CHECK_PORT" = "80"

</parameters>

<command-line>
cmd=${PYTHON}
arg="check_connect.py ${ADDRESS} ${CHECK_PORT}"

</command-line>

<command-data>
-- Currently unused.

</command-data>

<command-exit>
-- These are the exit codes used by Nagios plugins
down: ${EXIT_CODE}=4
critical: ${EXIT_CODE}=3
alarm: ${EXIT_CODE}=2
warn: ${EXIT_CODE}=1
okay: ${EXIT_CODE}=0

</command-exit>

<command-display>

- 145 -

Chapter 6: Command Line Probes

</command-display>

<tool:check_connect.py>
import sys
import socket

constant return codes for InterMapper
OKAY = 0
WARNING = 1
ALARM = 2
CRITICAL = 3
DOWN = 4

retcode = OKAY
output = ""

try:
host = sys.argv[1] # The remote host
port = long(sys.argv[2]) # The port
except:
print "Usage: check_connect HOST PORT"
sys.exit(DOWN)

try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((host, port))
s.close()
except IOError, e:
retcode = DOWN
if hasattr(e, 'reason'):
reason = 'Reason: ' + e.reason
elif hasattr(e, 'code'):
reason = str(e.code)
else:
reason = "unknown"

output = "Error (" + reason + ") connecting to " + str(host) + ":"
+ str(port)

print output
sys.exit(retcode)

</tool:check_connect.py>

- 146 -

The <tool> Section

Cscript Example

<!--
Check Web
Copyright© HelpSystems, LLC. All rights reserved.
-->

<header>
type = "cmd-line"
package = "com.dartware"
probe_name = "commandline.check_web"
human_name = "Check Web"
version = "1.1"
address_type = "IP"
display_name = "Miscellaneous/Test/Check Web"

visible_in = "Windows"
</header>

<description>
\GB\Check Web\p\

Given an address or hostname, attempts to connect to a web server.
</description>

<parameters>
</parameters>

<command-line>
-- Empty path forces the InterMapper Settings:Tools directory
path=
cmd="${CSCRIPT} check_web.vbs"
arg="${address}"
timeout = ${Timeout (sec)}

</command-line>

<command-data>
-- Currently unused.

</command-data>

<command-exit>
down:${EXIT_CODE}=4
critical:${EXIT_CODE}=3
alarm:${EXIT_CODE}=2
warning: ${EXIT_CODE} = 1
okay:${EXIT_CODE}=0

</command-exit>

<command-display>
${̂ stdout}

</command-display>

<tool:check_web.vbs>
Dim web
Set web = Nothing
Set web = CreateObject("WinHttp.WinHttpRequest.5.1")

numargs = wscript.arguments.count
If (numargs < 1) Then

- 147 -

Chapter 6: Command Line Probes

wscript.Echo "Usage: check_web hostname"
wscript.quit(4)
End If

URL = "http://" + wscript.arguments(0)

on error resume next
web.Open "GET", URL, False
on error resume next
web.Send
If err.Number <> 0 Then
returncode = 4
Else
If err.Number = 0 and web.Status = "200" Then
returncode = 0
Else
returncode = 4
End If
End If

If returncode <> 0 Then
wscript.Echo "Error connecting to " + URL +"."
Else
wscript.Echo ""
End If
wscript.quit(returncode)

</tool:check_web.vbs>

- 148 -

Command Line Probe Example

Command Line Probe Example
The following shell script is called from the command-line probe:

#!/bin/sh
Expects an address passed in. Passes out the address and a pretend
result.
Note that we use "\$" instead of just "$" because "$" has special
meaning
in a shell script.
echo "\{ \$addr := \"$1\", \$result :=1.2345 } Note that everything
after the brace is used as the reason."

<!--
Simple Command Line Example (com.dartware.cmd.simple)
Copyright© Help/Systems, LLC. All rights reserved.

-->

<header>
type = "cmd-line"
package = "com.dartware"
probe_name = "cmd.simple"
human_name = "Simple Command Line Output Example"
version = "1.0"
address_type = "IP"

</header>

<description>
This probe shows how to use the specially-formatted output from the
simple shell script listed above for display in the command-display
section, rather than being set to the reason as is usual for
command-line probes.
</description>

<parameters>
</parameters>

<command-line>
path = ""
cmd = "simple.sh ${ADDRESS}"

</command-line>

<command-exit>
down: ${EXIT_CODE} = 2
alarm: ${EXIT_CODE} = 1
okay: ${EXIT_CODE} = 0

</command-exit>

<command-display>
\B5\Simple Probe Information\0P\

 Output from $addr is $result (${chartable: #.#### : $result})
</command-display>

For more information about Nagios, visit the web site at http://www.nagios.org.
Nagios® and the Nagios logo are registered trademarks of Ethan Galstad.

- 149 -

http://www.nagios.org/

Chapter 6: Command Line Probes

InterMapper Python Plugins
InterMapper DataCenter ships with an embedded Python interpreter. You may use
this interpreter to write command-line probe scripts and command-line notifiers.
This Python interpreter is a good way to give maximum compatibility across sys-
tems. In InterMapper DataCenter 6.0[[[Undefined variable Primary.Cur-
rentVersion]]], the version of Python we ship is [[[Undefined variable
Primary.PythonVersion]]], with optimized system libraries.

An extensive introductory tutorial on Python is available at http://-
docs.python.org/tut

As shipped, this Python interpreter requires the use of optimized and stripped
mode (-OO), so the interpreter must be invoked as:

MacOSX/
Linux/
Unix:

/usr/local/imdc/core/python/bin/imdc -OO
[script_name]

Windows:
c:\Program Files\In-
terMapper\dwf\core\python\imdc.exe -OO
[script_name]

Notes:

l Use the ${PYTHON} macro as shown below; it automatically determines the
platform and expands to the proper path to the interpreter with the -OO argu-
ment.

l Use the The <tool> Section (Pg 144) (<tools:sample.py> in the example
below) to incorporate the Python script directly into the probe file itself.

Simple example

A simple sample probe that includes a Python script might look like this. The script
automatically gets saved in the InterMapper Settings/Tools directory.

<!--
Command Line Python Sample (com.dartware.python.sample.txt)
Custom Probe for InterMapper (http://www.intermapper.com)
Please feel free to use it as a base for further development.
Original version 31 Mar 2004 by Christopher L. Sweeney, HelpSys-

tems, LLC.
Updated 13 Jun 2007 by Stephen P. Ryan, HelpSystems, LLC, for

Python
Updated 28 Dec 2007 to update text descriptions and

include display_name header line -reb
Updated 3 Jan 2010 to include ${PYTHON} macro -reb

-->

<header>
type="cmd-line"
package="com.dartware"
probe_name="python.sample"
human_name="Python Sample"

- 150 -

http://docs.python.org/tut
http://docs.python.org/tut

InterMapper Python Plugins

version="1.1"
address_type="IP"
display_name = "Miscellaneous/Test/Python Sample"

</header>

<description>
\GB\Python Sample Command-Line Probe\p\

A sample command line probe which executes a Python script.

The Python script generates and returns a random number which sets
the device status to one of four values Down/Alarm/Warning/OK.

</description>

<parameters>
</parameters>

<command-line>
path=""
cmd="${PYTHON} sample.py ${ADDRESS}"
arg=""

</command-line>

<command-exit>
down:${EXIT_CODE}=3
alarm:${EXIT_CODE}=2
warning:${EXIT_CODE}=1
okay:${EXIT_CODE}=0

</command-exit>

<command-display>
</command-display>

<tool:sample.py>
#! /usr/local/imdc/core/python/bin/imdc -OO
Sample Python script uses InterMapper's Python interpreter

import sys

if (len(sys.argv) < 2):
print "Usage: %s _address_" % sys.argv[0]
sys.exit(0)

addr = sys.argv[1]

Code to get status from device at address addr
import random
result = random.randrange(4)

print "Pretending we got result %d from device at address %s" % (res-
ult, addr)
sys.exit(result)

</tool:sample.py>

- 151 -

Chapter 6: Command Line Probes

Nagios Plugins
InterMapper's command-line probes are similar to Nagios® plugins
(http://www.nagios.org). You can see the standard set of Nagios plugins. Many
vendors and individuals have created their own Nagios plugins, many of which are
available in the development section. You will have to download the Nagios plugins
and build/compile them yourself.

The Nagios Plugin probe lets you specify a Nagios plugin to run, along with any
associated parameters. You can use the ${ADDRESS} and ${PORT} macros in the
command line--InterMapper substitutes the device's IP address and the specified
port. InterMapper will invoke the plugin and use the exit value to set the condition
of the device to UP/Okay, UP/Alarm, UP/Critical, or DOWN.

InterMapper also interprets the information written by the plugin to stdout and puts
it in the InterMapper status window, nicely displaying and making chartable the
performance data returned by the probe, and displaying the reason/condition
provided.

The Nagios Plugin probe expects the Nagios plugin to be in the Tools sub-directory
of the InterMapper Settings directory. Nagios and the Nagios logo are registered
trademarks of Ethan Galstad. For more information, see http://www.nagios.org/.

To install and use a Nagios
plugin:

1. Download the plugin. Make
it executable by following
the instructions from the
creator.

2. Move the executable file
(or a link/alias/shortcut to
it) to the Tools sub-dir-
ectory of the InterMapper
Settings directory.

3. Add a device to the map
and set its Probe Type to
Nagios Plugin.

4. Enter in the plugin files's
name and arguments in
the Plugin field of the con-
figuration window.

5. You can use the
${ADDRESS} and ${PORT}
macros in the command
line. InterMapper will substitute the device's IP address and the specified
port.

- 152 -

http://www.nagios.org/
http://sourceforge.net/project/showfiles.php?group_id=29880
http://sourceforge.net/tracker?group_id=29880&atid=541465
http://www.nagios.org/

Nagios Plugins

Creating Nagios Probes

If you wish to develop your own Nagios plugins, you should follow the developer
guidelines for Nagios (found at http://nagiosplug.sourceforge.net/developer-
guidelines.html). This will result in probes/plugins that work for both InterMapper
and Nagios.

As described in the Nagios Guidelines, a Nagios plugin returns:

l a POSIX return code as described in section 2.4 of the Guidelines. Inter-
Mapper uses this to determine the device's state.

o 0 = OK;
o 1 = Warning (yellow);
o 2 = Critical (red);
o 3 = Down.

l A single output line on STDOUT with the following format.

<description of the device status>|Perfdata

where:

l <description of the device status> is a short text string. This becomes the
InterMapper Condition string, and is described in section 2.1 of the
Guidelines. The output string should have the format:

SERVICE STATUS: information text

l | is the "pipe" character to separate the description from the "Perfdata"
l Perfdata (Performance Data) is a series of name/value pairs. These are
described in section 2.6 of the Guidelines, but are generally a space-sep-
arated list with this form:

'label'=value[UOM];[warn];[crit];[min];[max]

Example Return String

The Nagios check_load string returns three values: the load average over 1, 5 and
15 minutes. When the plugin is invoked, it returns a response like this:

% ./check_load -w 15,10,5 -c 30,25,20
OK - load average: 0.95, 0.72, 0.64|load1=0.954;15.000;30.000;0;
load5=0.718;10.000;25.000;0; load15=0.635;5.000;20.000;0;

InterMapper parses the plugin's response line and uses the ${nagios_output}
macro to produce a status window as shown in the image below.

- 153 -

http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN76
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN33
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN201

Chapter 6: Command Line Probes

For more information about Nagios, visit the web site at http://www.nagios.org.
Nagios® and the Nagios logo are registered trademarks of Ethan Galstad.

Changes for InterMapper 5.0

For those familiar with the older Nagios Template probe, the new Nagios Plugin
probe contains the following changes in behavior:

l The Nagios Template probe mapped plugin exit code 2 as down. The Nagios
Plugin probe maps plugin exit code 2 as critical, and plugin exit code of 3 as
down.

l The Nagios Template probe took anything written to stdout as the "condition"
or "reason" for the status. The Nagios Plugin probe detects the presence of
performance data ('PERFDATA') (section 2.6 of the Guidelines) in the output,
and makes a formatted and chartable display of the data.

l We have not changed the canonical name of the Nagios probe; any device
which used the old Nagios Template probe will now automatically use the
Nagios Plugin probe. An InterMapper probe will automatically handle a Nagios
plugin if it has the following:
- "flags" = "NAGIOS3" in the <header> section of the probe. See Probe File
Header.
- ${nagios_output} in the <command-display> section of the probe. See
Built-in Variables

- 154 -

http://www.nagios.org/
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN201

Nagios Plugin Example

Nagios Plugin Example

<!--
Command Line Nagios Plug-in Example (com.dartware.nagiosx.template)
Copyright© HelpSystems, LLC. All rights reserved.
-->

<header>
 type = "cmd-line"
 package = "com.dartware"
 probe_name = "nagios.template"
 human_name = "Nagios Plugin"
 version = "1.6"
 address_type = "IP"
 display_name = "Miscellaneous/Nagios/Nagios Plugin"
 flags = "NAGIOS3"
</header>

<description>
\GB\Nagios Plugin\p\
This probe lets you specify a Nagios plugin. InterMapper invokes the
plugin and uses the exit value to set the condition of the device. It
uses performance data returned by the plugin to create a nice display
of chartable data. The \i\Plugin\p\ parameter below should be the
same command line (including arguments) used to test the plugin manu-
ally. \${ADDRESS} is replaced with the device's IP address, and
\${PORT} is replaced by the port specified for the probe.

This probe looks in the Tools sub-directory of the InterMapper
Settings directory for the plugin.

Nagios and the Nagios logo are registered trademarks of Ethan Gal-
stad. For more information, see \U2\http://www.nagios.org\P0\
</description>

<parameters>
 Plugin = "check_ping -H ${ADDRESS} -w 100,10% -c 1000,90%"
</parameters>

<command-line>
-- Empty path forces the InterMapper Settings:Tools directory
 path = ""
 cmd = ${Plugin}
</command-line>

<command-exit>
-- These are the exit codes used by Nagios plugins
 down: ${EXIT_CODE}=3
 critical: ${EXIT_CODE}=2
 alarm: ${EXIT_CODE}=1
 okay: ${EXIT_CODE}=0
</command-exit>

<command-display>
\B5\NAGIOS Probe Performance Data: ${Plugin}\P0\
${nagios_output}
</command-display>

- 155 -

Chapter 6: Command Line Probes

NOAAWeather Probe Example
It is now easier than ever to build command-line probes. Here is a fun example
that retrieves temperature data from the US NOAA weather feed in a particular
city.

How does this probe work?

1. Right-click a device and choose Select Probe...
2. Select theWeather Service-Temp probe from the Miscellaneous/Test cat-

egory.
3. Enter the city code for the closest weather station (KLEB is at Lebanon Muni-

cipal Airport, about a half mile to the south of us.) The Status window shows
the name of the weather station, with a chartable value for the temperature
reading.

Under the covers, InterMapper launches a Python program to contact the weather
service, retrieve the meteorological conditions for the indicated city, and parses
out the XML response to retrieve the temperature. (There's lots more information
in the Weather Service feed - the program could easily be extended to display
more information.) Here are some of the features of this probe:

l The ${PYTHON} macro gives the path to the built-in python interpreter of
InterMapper DataCenter no matter what platform you're using. For example,
the probe can now use

cmd = "${PYTHON} program.py"

and InterMapper substitutes the proper path to invoke Python, whether on
Windows, OSX, or Linux/Unix.

Note: To use this macro, the InterMapper DataCenter (IMDC) must be
installed. IMDC will be installed automatically with InterMapper 5.2 on Win-
dows and OSX; Linux and Unix systems require a separate install for IMDC.

l You can include the script directly in the text of the probe file. This makes it
much easier to write scripts and keep the probe file in sync. To do this, use
the <tool:program-name> section in your probe file. The example below con-
tains a program named noaa-weather.py. When InterMapper loads the probe,
it parses out this section and saves it in a folder within the Tools directory of
InterMapper Settings. Programs in the <tools> section may also save private
files in that directory.

l The example probe file uses a couple interesting Python libraries. First is url-
lib2 that makes it easy to make queries from web services. It's a few straight-
forward calls to build a url, issue it, and retrieve the results.

l The probe also uses the xml.dom.minidom library to parse out XML data
returned from the NOAA web service. This library is particularly well-
explained in Chapter 9 of Dive into Python.

- 156 -

http://www.weather.gov/xml/current_obs/

NOAA Weather Probe Example

The NOAA Temperature Probe

To use this probe, copy the text below, paste it to a text editor, save it to a text
file, then use File->Import->Probe... in InterMapper.

<!--
Weather Service Temperature - Retrieve the temperature from the NOAA
weather XML (com.dartware.tool.noaa.txt)
Copyright© HelpSystems, LLC.
Please feel free to use this as a base for further development.
-->

<header>
type = "cmd-line"
package = "com.dartware"
probe_name = "tool.noaa"
human_name = "Weather Service-Temperature"
version = "1.2"
address_type = "IP"
display_name = "Miscellaneous/Test/Weather Service-Temp"

</header>

<description>
\GB\Retrieve the current temperature\p\

This probe retrieves the current temperature from the NOAA weather
feed. To see the proper city code, visit:

\u4=http://www.weather.gov/xml/current_obs/\ht-
tp://www.weather.gov/xml/current_obs/\p0\
</description>

<parameters>
"Weather Station" = "KLEB"

</parameters>

<command-line>
path=""
cmd="${PYTHON} noaa-weather.py"
arg="${Weather Station}"

</command-line>

<command-exit>
-- These are the exit codes used by Nagios plugins

down: ${EXIT_CODE}=4
critical: ${EXIT_CODE}=3

alarm: ${EXIT_CODE}=2
warn: ${EXIT_CODE}=1
okay: ${EXIT_CODE}=0

</command-exit>

<command-display>
\b5\ Temperature for $loc\p0\

Temperature: $temp \3g\degrees F\p0\
</command-display>

- 157 -

Chapter 6: Command Line Probes

<tool:noaa-weather.py>

noaa-weather.py
Scan the XML results from NOAA's XML feeds
e.g., http://www.weather.gov/xml/current_obs/KLEB.xml
for relevant weather-related information.
25 Mar 2009 -reb
import os
import re
import sys
import getopt
import urllib
import urllib2
import htmllib
from xml.dom import minidom

httplib.HTTPConnection.debuglevel = 1 # force debugging....

options are: station

try:
opts, args = getopt.getopt(sys.argv[1:], "")

except getopt.GetoptError, err:
searchString = "getopt error %d" % (err)

station = args[0]
userAgent = "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_5; en-us)
AppleWebKit/525.18 (KHTML, like Gecko) Version/3.1.2 Safari/525.20.1"
noaaString = "http://www.weather.gov/xml/current_obs/%s.xml"
noaaString = noaaString % (urllib.quote_plus(station))

print noaaString;
retcode = 4;
try:
request = urllib2.Request(noaaString)
opener = urllib2.build_opener()
request.add_header('User-Agent', userAgent)
usock= opener.open(request)

print buf
except IOError, e:
if hasattr(e, 'reason'):
resp = 'We failed to reach a server. '
reason = 'Reason: ' + 'Wrong host name?' # e.reason[1]

elif hasattr(e, 'code'):
resp = 'The server couldn\'t fulfill the request. '
reason = 'Error code: '+ str(e.code)

print "\{ $temp := '%s', $loc := 'Unknown' } %s" % (0, resp +
reason)
sys.exit(retcode) # make it look down

 retcode = 0 # looks like it'll succeed
 xmldoc = minidom.parse(usock)
 tempList = xmldoc.getElementsByTagName('temp_f')
 tempElem = tempList[0]
 tempval = tempElem.firstChild.data
 loclist = xmldoc.getElementsByTagName('location')
 locval = loclist[0].firstChild.data
 print "\{ $temp := '%s', $loc := '%s' }%s" % (tempval, locval,

- 158 -

NOAA Weather Probe Example

tempval + ' degrees at ' + locval)
 sys.exit(retcode)
</tool:noaa-weather.py>

See also

${PYTHON} macro (Pg 36) - the full path the to the Python interpreter.

The <tool> Section (Pg 144) - Include a script directly into the probe file.

Python Documentation:
urllib2 - http://docs.python.org/library/urllib2.html
xml.dom.minidom - http://docs.python.org/library/xml.dom.minidom.html

Dive into Python: A very readable chapter on XML processing in Python
http://diveintopython.org/xml_processing/

- 159 -

http://docs.python.org/library/urllib2.html
http://docs.python.org/library/xml.dom.minidom.html
http://diveintopython.org/xml_processing/

Chapter 6: PowerShell_Probe

PowerShell_Probe
A PowerShell probe is essentially a Command Line probe with a PowerShell Script
attached to it.

The only difference is that there are two sets of script arguments:

1. The arguments passed to the Windows command line
2. The arguments passed to the script itself

The things you can do with a PowerShell probe are virtually limitless.

See the PowerShell Probe Example (Pg 161) for more information.

- 160 -

PowerShell Probe Examples

PowerShell Probe Examples
PowerShell probes are command-line probes. They launch PowerShell, then invoke
a command.

The two examples below demonstrate two different InterMapper macros:

l ${PSREMOTE} - for less experienced PowerShell users, this macro handles
the connection to the remote machine. It creates a credential object and sets
up authentication, then executes the specified command on the remote
machine.

l ${PS} - for experienced PowerShell users, this macro simply launches Power-
Shell on the local machine with the specified arguments, and leaves all Power-
Shell commands up to the developer.

These macros are used in the <command-line> (Pg 142) section of the probe.

Any script must be located in the InterMapper Settings\Tools folder. If you
include the script in the <tools> section, it is installed in the Tools folder when you
load the probe.

Example 1: Installed Software Probe

This probe lists installed applications, updates, or both on the target device. It
launches PowerShell with the arguments supplied in arg, uses ${PSREMOTE} to con-
nect to and authenticate on the remote device, then executes the command spe-
cified input.

<!--
This probe lists installed Applications, Updates, or Both using Power-
Shell. Requires PowerShell 2.0 or later and requires that PS remoting
be enabled.

File Name: com.helpsystems.powershell.remote.installedSoftware.txt
(c) 2015 HelpSystems, Inc.
-->

<header>
type = "cmd-line"
package = "com.helpsystems"
probe_name = "ps.remote.InstalledSoftware"
human_name = "Installed Software"
version = "1.0"
address_type = "IP"
display_name = "PowerShell/Remote/Installed Software"
visible_in = "Windows"
flags = "NTCREDENTIALS"

</header>

<description>
\GB\List Installed Software\p\

This probe uses PowerShell to provide a listing of installed soft-
ware, installed updates, or both. This probe requires that \b\Power-
Shell 2.0\p\ or later be installed, and PowerShell remoting must be

- 161 -

Chapter 6: PowerShell Probe Examples

enabled and configured to use this probe. This probe uses the
registry, not WMI objects

InterMapper invokes the included ApplicationList.ps1 companion script
in InterMapper Settings/Tools.

</description>

<parameters>
"Type[Software,Update,All]"="Software"
User=""
"Password*" = ""

"Authentication[Default,Basic,Nego-
tiate,Nego-
tiateWithImplicitCredential,Credssp,Digest,Kerberos]"="Default"

"Timeout (sec)"="10"
</parameters>

<command-exit>
down:${EXIT_CODE}=4
critical:${EXIT_CODE}=3
alarm:${EXIT_CODE}=2
warning:${EXIT_CODE}=1
okay:${EXIT_CODE}=0

</command-exit>

<command-line>
path=""
cmd="${PSREMOTE}"
arg="-ExecutionPolicy RemoteSigned -NoProfile"
input = "Invoke-Command -FilePath .\\ApplicationList.ps1 -Argu-

mentList '${Type[Software,Update,All]}'"
timeout = ${Timeout (sec)}

</command-line>

<command-display>
${Type[Software,Update,All]} installed on ${address}
${̂ stdout}

</command-display>

<tool:ApplicationList.ps1>
param([string] $filter)

$exitCode = 0
$reason = ''

if ($filter -eq 'All')
{

$software = Get-ItemProperty HKLM:\Soft-
ware\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall* |
Select-Object DisplayName, DisplayVersion, InstallDate, Publisher |
Sort-Object DisplayName
}

elseif ($filter -eq 'Update') #show only windows updates
{

$software = Get-ItemProperty HKLM:\Soft-
ware\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall* |
Select-Object DisplayName, DisplayVersion, InstallDate, Publisher |

- 162 -

PowerShell Probe Examples

where {$_.DisplayName -match $filter} | Sort-Object DisplayName
}

elseif ($filter -eq 'Software')
{

$software = Get-ItemProperty HKLM:\Soft-
ware\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall* |
Select-Object DisplayName, DisplayVersion, InstallDate, Publisher |
where {$_.DisplayName -notmatch 'update'} | Sort-Object DisplayName
}

#get rid of blanks in the input
$cleanedUpList = New-Object System.Collections.ArrayList

foreach($app in $software)
{

if ($app.DisplayName)
{

$cleanedUpList.Add($app) | Out-Null #ArrayList.Add returns
the index of the item added, we don't want this goint to standard
out, confusing InterMapper.

}
}

#set up the object for return

InterMapper can't take an array or ArrayList of objects yet, so con-
vert to a string.
Also, Powershell will truncate to a default size, unless the table
is formatted using -AutoSize and get around column dropping by set-
ting the width of the resulting string.
$stdoutString = $cleanedUpList |format-table -AutoSize | out-string -
width 4096

$result = New-Object PSCustomObject -Property @{
'stdout'=$stdoutString;
'ExitCode'=$exitCode;
'reason'=$reason;

}
write-output $result

</tool:ApplicationList.ps1>

Example 2: Windows Disk Space Probe

This probe checks the amount of disk space on the target device. It uses ${PS} to
launch PowerShell with the arguments supplied in arg, then executes the com-
mand specified in input.

Like the first example, this one connects to a remote device, but does not use
${PSREMOTE} to handle the connection. This example also passes thresholds to the
script so that it can return the correct exit code.

- 163 -

Chapter 6: PowerShell Probe Examples

<!--

Windows Disk Space Probe
This probe uses a PowerShell script to look up the amount of disk
space on the
target device.
(c) 2015 HelpSystems, Inc.
-->

<header>
type = "cmd-line"
package = "com.helpsystems"
probe_name = "ps.wmi.diskspace"
human_name = "Non-Remoting (WMI) Disk Space Monitor"
version = "1.0"
address_type = "IP"
display_name = "PowerShell/Disk Space"
visible_in = "Windows"

flags = "NTCREDENTIALS"
</header>

<description>
\GB\Windows Disk Space Monitor\p\

This probe uses Powershell to retrieve the disk space available on a
drive

on the target host. Specifically, it queries the Size and FreeSpace
properties of the Win32_LogicalDisk class, computes percentage free

space,
and compares it against the Warning and Critical parameters you set.

The
target host must be running PowerShell with Remoting enabled.

The Drive parameter may be set to "All" to enumerate all Local hard
drives

on the host. It may also be set to a list of comma-separated drive
names

(including the colon), which will be listed whether or not they are
local

hard drives. Zero-sized drives (i.e. an empty cd-rom) will not be
listed.

The first drive failing the warning or critical criteria will be the
one

cited in the reason.

The User parameter may be a local user on the target host, or may
take the

form of "domain\\user" for a domain login. Leave it blank if authen-
tication

is not required, such as when the target is the localhost.

InterMapper invokes the WindowsFreeDiskSpace.ps1 companion script
which was

placed in the Tools folder of the InterMapper Settings folder when
this

probe was loaded. It uses the exit value to set the condition of
the device

and the performance data returned by the script to create a nice dis-
play of

- 164 -

PowerShell Probe Examples

chartable data.
</description>

<parameters>
Drive="C:"
"Warning (%)"="10"
"Alarm (%)"="5"
"Critical (%)"="3"
"Down (%)"="1"
User=""
"Password*" = ""
"Timeout (sec)"="10"

"Powershell Version[notSpecified,2.0,3.0,4.0,5.0]"="notSpecified"
</parameters>

<command-exit>
down:${EXIT_CODE}=4
critical:${EXIT_CODE}=3
alarm:${EXIT_CODE}=2
warning:${EXIT_CODE}=1
okay:${EXIT_CODE}=0

</command-exit>

<command-line>
path=""
cmd="${PS}"
arg="-ExecutionPolicy RemoteSigned -NoProfile"
input = "$c = New-Object System.Management.Automation.PSCredential -

ArgumentList '${User}', (ConvertTo-SecureString -String '${Pass-
word*}' -AsPlainText -Force) ; Invoke-Command -ScriptBlock { &
'.\\WindowsFreeDiskSpace.ps1' -compName '${address}' -cred $c -drives
'${Drive}' -downThr ${Down (%)} -critThr ${Critical (%)} -alrmThr
${Alarm (%)} -warnThr ${Warning (%)} }"

timeout = ${Timeout (sec)}
</command-line>

<command-display>

Disk Space Available
${̂ stdout}

</command-display>

<tool:WindowsFreeDiskSpace.ps1>
param([string] $compName, [System.Management.Automation.PSCredential]
$cred, [string] $drives, [int] $downThr, [int] $critThr, [int]
$alrmThr, [int] $warnThr)

Function Update-ExitCode
{

param([int] $current_status, [int] $new_status)

if ($new_status -gt $current_status) { return $new_status }
else { return $current_status }

}

Function Update-Reason
{

param($disk_name,$disk_threshold)

- 165 -

Chapter 6: PowerShell Probe Examples

return "Disk $disk_name is below $disk_threshold % free."
}

$STATUS = New-Object -TypeName PSObject -Prop(@
{'down'=4;'critical'=3;'alarm'=2;'warning'=1;'ok'=0})

#reason and exit code
[int] $exit_code = $STATUS.ok
[string] $reason = "All disks within acceptable limits"
[string] $debugInfo = ''

$disks = New-Object -TypeName System.Collections.ArrayList

if ($drives -eq "All")
{

$disks = (Get-WmiObject Win32_LogicalDisk -ComputerName $compName
-Credential $cred -Filter "DriveType='3'" | Select-Object
Size,FreeSpace,DeviceID)
}

else
{

$diskList = (Get-WmiObject Win32_LogicalDisk -ComputerName $com-
pName -Credential $cred | Select-Object Size, Freespace, DeviceId)

$driveArray = $drives.replace(' ', '').split(',')
foreach($drive in $driveArray)
{

#$debugInfo += "$drivè r̀ n"

$found = $false

foreach($disk in $diskList)
{

#$debugInfo += $disk.GetType().FullName

if ($disk.DeviceID -eq $drive)
{

$found = $true
if ($disk.Size -ne $null)
{

#$debugInfo += " -- adding " + $disk.DeviceID + "
Size: " + $disk.Size + " FreeSpace: " + $disk.FreeSpace + "̀ r̀ n"

$disks.Add($disk)
}
else
{

$debugInfo += $disk.DeviceID + " --- No inform-
ation ---̀ r̀ n"

}
}

}

if ($found -ne $true)
{

$debugInfo += $drive + " --- Not found ---̀ r̀ n"
}

}
}

- 166 -

PowerShell Probe Examples

if ($disks.count -eq 0)
{

throw "Disks could not be found or parameter error. Check your
probe settings.̀ r̀ n" + $debugInfo
}

foreach ($disk in $disks)
{

#calculate percentage of the disk that is free
$disk | Add-Member -type NoteProperty -name "PercentFree" -value

([Math]::round($disk.FreeSpace / $disk.Size * 100))
$disk.Size = "{0:N1}" -f [Math]::round(($disk.Size/1GB))
$disk.FreeSpace = "{0:N1}" -f [Math]::round

(($disk.FreeSpace/1GB))

calculate alerts
if ($disk.PercentFree -le $downThr)
{

$disk | Add-Member -type NoteProperty -name "exit_code" -
value $STATUS.down

$old_code = $exit_code
$exit_code = $STATUS.down
if ($old_code -ne $exit_code)
{

$reason = Update-Reason $disk.DeviceID $downThr
}

}

elseif ($disk.PercentFree -le $critThr -and $disk.PercentFree -gt
$downThr)

{

$disk | Add-Member -type NoteProperty -name "exit_code" -
value $STATUS.critical

$old_code = $exit_code
$exit_code = Update-ExitCode $exit_code $STATUS.critical
if ($old_code -ne $exit_code)
{

$reason = Update-Reason $disk.DeviceID $critThr
}

}

elseif ($disk.PercentFree -le $alrmThr -and $disk.PercentFree -gt
$critThr)

{
$disk | Add-Member -type NoteProperty -name "exit_code" -

value $STATUS.alarm
$old_code = $exit_code
$exit_code = Update-ExitCode $exit_code $STATUS.alarm
if ($old_code -ne $exit_code)
{

$reason = Update-Reason $disk.DeviceID $alrmThr
}

}

elseif ($disk.PercentFree -le $warnThr -and $disk.PercentFree -gt
$alrmThr)

- 167 -

Chapter 6: PowerShell Probe Examples

{
#$disk | Add-Member -type NoteProperty -name "exit_code" -

value $STATUS.warning
$old_code = $exit_code
$exit_code = Update-ExitCode $exit_code $STATUS.warning
if ($old_code -ne $exit_code)
{

$reason = Update-Reason $disk.DeviceID $warnThr
}

}

else
{

#$disk | Add-Member -type NoteProperty -name "exit_code" -
value $STATUS.ok

$exit_code = Update-ExitCode $exit_code $STATUS.ok
}

}

#format the output for the probe to display in the status window
$stdoutString = ($disks | Format-Table DeviceID,S-
ize,FreeSpace,PercentFree | out-string)
$stdoutString += $debugInfo

#create the return object that the probe will use for display

$result = New-Object PSCustomObject -Property @{
'stdout'=$stdoutString;
'ExitCode'=$exit_code;
'reason'=$reason;

}
write-output $result

</tool:WindowsFreeDiskSpace.ps1>

- 168 -

Troubleshooting PowerShell Probes

Troubleshooting PowerShell Probes
When you run a PowerShell probe, InterMapper launches PowerShell.exe and has
it execute a command or script. It passes two sets of input:

l The parameters used to launch PowerShell.
l The command executed once PowerShell is launched.

InterMapper combines these inputs into a single command, which may reference a
separate PowerShell script. All scripts (or links to them) must reside in the Inter-
Mapper Settings\Tools folder.

Each time a PowerShell probe is chosen, or when its parameters change, two
things happen.

1. A connectivity test is run.
2. If the test is successful, the probe runs at the next polling interval.

For the connectivity test, and for each time a PowerShell probe runs, two entries
are created in the Debug log:

l One entry shows the input string sent to stdin.
l A second entry shows the variables returned by the probe, enclosed in "\
{...}", followed by the string assigned to stdout.

Example Debug Log entries are shown below.

For each entry, the first two sets of numbers are:

l The time
l The IP address of the target device.

Connectivity Test Command

12:56:14 10.65.49.31 : Remoting Disk Space Monitor: XCm-
dLine::SendProbe: stdin: 1090 $global:t = 0 ; try { ; $Er-
rorActionPreference = 'Stop' ; $global:t = 1 ; Write-Output
"PSRTest: $global:t" ; $vMaj = $PSVersionTable.PSVersion.Major ;
Write-Output $vMaj ; $global:t = 2 ; Write-Output "PSRTest: $glob-
al:t" ; Test-WSMan 10.65.49.31 ; $global:t = 3 ; Write-Output
"PSRTest: $global:t" ; $cred = New-Object Sys-
tem.Management.Automation.PSCredential -ArgumentList '\Fred Flint-
stone', (ConvertTo-SecureString -String '*************' -AsPlainText
-Force) ; Connect-WSMan 10.65.49.31 -Authentication Default -Cre-
dential $cred ; $maxConnections = Get-ChildItem -Path
WSMan:/10.65.49.31/Service/MaxConnections ; Disconnect-WSMan
10.65.49.31 ; Write-Output $maxConnections ; $global:t = 4 ;
Write-Output "PSRTest: $global:t" ; $sess = New-PSSession
10.65.49.31 -Authentication Default -Credential $cred ; $result =
New-Object PSCustomObject -Property @{ 'State'=$sess.State; 'Avail-
ability'=$sess.Availability } ; Remove-PSSession -Id $sess.Id ;
Write-Output $result ; } catch { ; throw "Exception in PSRTest:
$global:t $_.Exception.Message" ; }

Connectivity Test Response

- 169 -

Chapter 6: Troubleshooting PowerShell Probes

12:56:19 10.65.49.31 : Remoting Disk Space Monitor: XCm-
dLine::PollProbeForPS -- Reason: \{ reason:='PowerShell Remoting Test
succeeded; Your probe will run next probe cycle.'} *** PowerShell
Tests *** Running with PowerShell version 3.0.
Test-WSMan succeeded: received expected response.
Connect-WSMan succeeded: MaxConnections = 300.
New-PSSession succeeded: State = Opened, Availability = Available.

The PowerShell Remoting Test succeeded. Your probe will run next
probe cycle.

Sending a Command

12:56:44 10.65.49.31 : Remoting Disk Space Monitor: XCm-
dLine::SendProbe: stdin: 409 $cred = New-Object Sys-
tem.Management.Automation.PSCredential -ArgumentList '\Fred
Flintstone', (ConvertTo-SecureString -String '*************' -
AsPlainText -Force) ; $sess = New-PSSession 10.65.49.31 -Authentic-
ation Default -Credential $cred ; try { Invoke-Command -Session $sess
-FilePath .\WindowsFreeDiskSpace.ps1 -ArgumentList localhost, 'C:,
D:, L:', 1, 3, 5, 10 } finally { Remove-PSSession -Id $sess.Id }

Command Response

12:56:49 10.65.49.31 : Remoting Disk Space Monitor: XCm-
dLine::PollProbeForPS -- Reason: \{ PSCom-
puterName:='10.65.49.31',RunspaceId:='a8f1f138-7781-4e77-a185-
18aa6db978c9',PSShowComputerName:='true',reason:='Disk C: is below 5
% free.'} DeviceId Size Freespace PercentFree
-------- ---- --------- -----------
C: 918.0 43.0 5
D: 13.0 2.0 12
L: 932.0 917.0 98

- 170 -

Working With Probe Files
Installing and Reloading Probes

Use custom probes to enhance InterMapper's capabilities. These are probes cre-
ated for special purposes or for certain devices.

To install a custom probe:

1. Download the probe, and uncompress the file if necessary.
2. From the File menu, choose Import > Probe command

 or

Click the Plus icon (shown at right) in the Set Probe window. A file
dialog appears. Choose the probe file you want to import, and
click Open. The probe is installed copied to the InterMapper Set-
tings/Probes directory, and becomes available from the Set Probe
window.

To test a custom probe after importing it:

1. Open an InterMapper map.
2. Add a new device with the DNS name or IP address of the device you want to

test.
3. Right-click the device and choose Set Probe... The Select Probe window

appears.
4. Select the new probe from the Select Probe window.
5. Configure the probe by filling in the fields as required.
6. When finished, click OK. InterMapper begins using the new probe to test the

device.

Reloading a Probe

If you make changes to a probe, you need to do one of two things before the
changes become active:

l Re-import the probe as described above. You can do this regardless of the
probe file's location.

l Manually reload probes. If you make a change to the probe file loc-
ated in the InterMapper Settings/Probes directory, you must click
the Reload Probes button (shown at right) to activate your
changes.

- 171 -

Chapter 7

Chapter 7: Working With Probe Files

Modifying Built-in Probes
Built-in probes are stored in a ZIP archive named BuiltinProbes.zip, located in the
Intermapper Settings/Probes directory.

To view or modify a built-in probe, you'll need to unzip the archive.

How InterMapper resolves filename conflicts

InterMapper scans the archive as well as the unzipped contents of the folder.

If a built-in probe's filename matches an unzipped version, InterMapper locates
the most recent version of the probe with:

l the probe's version number

then

l the probe's last-modified date

If you are developing or modifying a built-in probe, be sure to advance the version
number to be sure that InterMapper uses the modified version.

Sharing Probes
InterMapper has an enthusiastic user-base that has contributed literally hundreds
of probes, many of which have been adopted as built-in probes. Users are encour-
aged to check out the library of user-contributed probes, and to contribute useful
probes themselves.

Sharing Your Own Probes

If you create a probe you find useful, please contribute your new probe so others
can use it as well. Send us an e-mail at support@intermapper.com and we'll post it
to the Contributions page mentioned above.

Using Contributed Probes

You can use any of the probes that HelpSystems has created, or use probes con-
tributed by our other customers. These probes are available from:

http://intermapper.com/go.php?to=probes.contrib

- 172 -

mailto:support@intermapper.com
http://dartware.com/go.php?to=probes.contrib

Troubleshooting Probes
There are a number of different ways to troubleshoot your custom probes.

The most basic troubleshooting is done through the error messages that appear in
the device's Status window. Use the comprehensive list of Error Messages to help
you track down errors.

For SNMP probes, you can use SNMPWalk to view the MIB variables returned from
an SNMP device. Use SNMPWalk with the -O option to redirect the output from the
Debug log to an SQLite database.

You can also gain a lot of information by measuring response times of a device as
it is being tested. A number of different timers are available for viewing and chart-
ing.

- 173 -

Chapter 8

Chapter 8: Troubleshooting Probes

Errors with Custom Probes
When working with custom probes, you may see results that you don't expect.
Here are some common problems.

Error: "Undefined variable" in Debug log

When processing a probe, InterMapper will not evaluate an expression if it detects
a variable that is not defined. A variable will be undefined if it is not in the symbol
table. This could happen because:

l there is a typo in the variable name
l the value for the variable was not returned in a SNMP response
l the value was not set earlier in the probe processing

In this case, InterMapper will emit the following message in the Debug log file:

Calculation error in rule (probe: com.dartware.example, expression:
 "($oid 0)"): Undefined variable: '$oid'

To guard against these error messages (where it may be a legitimate case that a
particular variable is undefined) you may use the "defined()" function in the expres-
sion:

warning: defined("oid") && ($oid> 0) "Warning condition string"

Error: A device shows a "Reason: No SNMP Response." at the bottom of
the status window.

There are several reasons that InterMapper might not be able to retrieve SNMP
information from a device. The two most common are

l The device doesn't speak SNMP
l You haven't entered the proper SNMP read-only community string.

About SNMP, located in the Troubleshooting section of the User Guide, lists many
other reasons.

Error: When I build a custom probe, the status window shows "[N/A]"
for certain values.

This probably means that there is an error with the OID for one of the device vari-
ables.

Open the Debug window, and look for entries in this format:

12:57:00 router.example.net.: SNMP error status [[query = 28]]
noSuchName (2), index = 3
1) 1.3.6.1.2.1.1.3: NULL
2) 1.3.6.1.2.1.1.1: NULL
3) 1.3.6.1.7.1.1.4: NULL
4) 1.3.6.1.2.1.1.6: NULL

- 174 -

http://dartware.com/go.php?to=intermapper.userguide

Errors with Custom Probes

Note that the first line above shows a "noSuchName" error for index 3. Look at the
subsequent lines to find item 3, and check that OID very carefully. In this example,
the proper OID should have a "2" in place of the "7" that's there.

Error: When I build a custom probe, the status window shows "
[noSuchName]" for certain values.

This probably means that there is an error with the OID for one of the device vari-
ables.

Open the Debug window, and look for entries in this format.

13:17:59 OID Error: GetNextRequest from 192.168.1.1 expected
1.3.6.1.2.1.2.2.1.2.10; got 1.3.6.1.2.1.2.2.1.3.1

In this case, the desired value is from a non-existent table row. (The OID
1.3.6.1.2.1.2.2.1.2 is the ifDescr for an interface on a device. The index (.10) indic-
ates which row to retrieve. But when InterMapper requested that row, it learned it
was not present.) Consequently, InterMapper displays the "noSuchName" value.

- 175 -

Chapter 8: Troubleshooting Probes

Debugging with the SNMPWalk Command
InterMapper provides a simple SNMPWalk command, available from the Monitor
menu, that allows you to perform an SNMPWalk on a specified OID. In some cases
this may not be sufficient. You can also execute SNMPWalk as a server command,
and include specific arguments as described below.

The InterMapper server implements a simple snmpwalk facility in its debug mode.

snmpwalk -v [1|2c|3] -c community -o filename [-e] [-n num-OIDs] -p
161 -r 3 -t 10 IP-address startOID

where:

l -v [1|2c|3] is the version of SNMP to use: SNMPv1, SNMPv2c, or SNMPv3
l -c community indicates the SNMP read-only community string (see note for
SNMPv3)

l -e if present, means to proceed to the end of the MIB
l -n num-OIDs if present, indicates the number of OIDs to display (-e and -n
are mutually exclusive)

l -o filename is the name of a SQLite-format file saved in the InterMapper Set-
tings/Temporary directory. For more information see Using the SNMPWALK -
O Option.

l -p destination port (default is 161)
l -r number of retries that InterMapper will attempt if a response doesn't
return (default is 3)

l -t timeout in seconds that InterMapper waits for a response (default is 10
seconds)

l IP-address is the IP address of the device to query
l startOID if present as the final argument, indicates the first OID to request

The command will start an SNMP walk on device with the specified IP-Address,
starting from the given startOID. The walk will end when the specified number of
OIDs has been received. The walk will also end if the OID received from the device
does not have the specified start OID as its prefix unless -e is specified. If -e is spe-
cified, the walk will continue until the end of the MIB or the specified maximum
OIDs have been received.

Note: For SNMPv3, community should be in the following format:

username:[md5|sha|none]:authpassword:[des|none]:privpassword

- 176 -

Debugging with the SNMPWalk Command

Examples

Example: SNMP walk of the ifTable of a device with IP address 192.168.1.1 using
SNMPv2c with community string public:

snmpwalk -v 2c -c public 192.168.1.1 1.3.6.1.2.1.2.2

Example: SNMP walk of the ifXTable of a device with IP address 10.10.2.20 using
SNMPv3 with user name 'user', authentication protocol MD5, authentication pass-
word 'auth', privacy protocol DES and privacy password 'priv':

snmpwalk -v 3 -c user:md5:auth:des:priv 10.10.2.20 1.3.6.1.2.1.31.1.1

Example: SNMP walk of the ifTable of a device with IP address 192.168.1.2 using
SNMPv3 with user name 'test', authentication protocol MD5, authentication pass-
word 'pass', and no privacy protocol:

snmpwalk -v 3 -c test:md5:pass:none: 192.168.1.2 1.3.6.1.2.1.2.2

Example:Walk starting from the ifTable until the end of the device is reached or
until 10,000 OIDs have been received:

snmpwalk -v 1 -c public -e -n10000 192.168.1.1 1.3.6.1.2.1.2.2

- 177 -

Chapter 8: Troubleshooting Probes

Invoking the snmpwalk command

You execute the snmpwalk
command as a "Server com-
mand..." (available from the
Help menu's Diagnostics
menu) To use this com-
mand:

1. Select Help > Dia-
gnostics > Server
Command... The
Server command win-
dow appears as shown above.

2. Enter the snmpwalk command, and click Send.
3. The output of the SNMPwalk is written to the Debug file, which is at this path:

InterMapper Settings : InterMapper Logs : Debugyyyymmddhhmm.txt

Note: You can use snmpwalk's -o option to direct the output of snmpwalk to
an SQLite database. For more information, see Using the SNMPWALK -o
Option (Pg 179).

4. The output of the SNMPwalk will also appear in the Debug window, as shown
below:

SNMPWalk 192.168.1.1: prefix 1.3 (maximum number of OIDs: 2000)
-- 9/16/2005 13:04:56
SNMPWalk on 192.168.1.1 started
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.1.0 = OctetString: ExampleOS
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.2.0 = OID: 1.3.6.1.4.1.9.1
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.3.0 = TimeTicks: 11058776
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.4.0 = OctetString: sup-
port@example.com
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.5.0 = OctetString: Example.com
Router
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.6.0 = OctetString: http://www.ex-
ample.com
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.7.0 = Integer: 72
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.8.0 = TimeTicks: 413
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.9.1.2.1 = OID: 1.3.6.1.2.1.1.9.1
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.9.1.3.1 = OctetString: See
RFC2580
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.1.9.1.4.1 = TimeTicks: 413
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.2.1.0 = Integer: 2
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.2.2.1.1.1 = Integer: 1
SNMPWalk 192.168.1.1: 1.3.6.1.2.1.2.2.1.1.2 = Integer: 2
...
SNMPWalk 192.168.1.1: Finished (end of MIB reached) -- 9/16/2005
13:09:48

- 178 -

Using the SNMPWALK -o Option

snmpwalk stopall command

To stop all SNMPwalks for a particular server, you can enter this command in the
Server command... window.

snmpwalk stopall

Error Conditions

InterMapper detects the following error conditions:

l When InterMapper walks to the end of the MIB, it displays a "Finished (end of
MIB reached)" message

l When InterMapper fails to receive a response after the specified number of
retries, it displays a "Finished (No response received)" message

l The snmpwalk expects that the OIDs received are increasing. When Inter-
Mapper receives an OID that is out of order, it would terminate the walk with
an error message that indicates that a loop is detected in the walk.

Help from the telnet command line

There is also documentation in the InterMapper's telnet help. Typing 'help snmp-
walk' in the telnet window will display a summary of the command.

Using the SNMPWALK -o Option

Instead of writing the voluminous results of the SNMPWalk to the Debug log, Inter-
Mapper can write the results to an SQLite file. To use this feature, you use the -o
option.

When you use the -o option, snmpwalk stores its output into an SQLite database.
To use this feature, you specify the name of the database file following the -o
option.

Example:

To create an SQLite3 database named "foo" and store the snmpwalk results there,
use the following "server command":

snmpwalk -v1 -c public -o foo switch 1.3

This writes the output to an SQLite database file named "foo", located in Inter-
Mapper Settings/Temporary directory. The database file named "foo" may contain
multiple snmpwalk's. The file is created if it doesn't exist.

- 179 -

Chapter 8: Troubleshooting Probes

When the -o option is used, only these four lines are written to the Debug log:

SNMPWalk command received: 'snmpwalk -v1 -c public -o foo -n 10
switch 1.3'
SNMPWalk 192.168.1.36 3: prefix 1.3 (version SNMPv1 ...
SNMPWalk on switch started
SNMPWalk 192.168.1.36 3: Finished (10 OIDs ...

The SNMPWALK Schema

Here is the schema used for the snmpwalk database:

CREATE TABLE walks (
id INTEGER PRIMARY KEY,
address TEXT,
port INTEGER,
startOid TEXT,
snmpVersion INTEGER,
pktTimeout INTEGER,
pktRetries INTEGER,
maxOids INTEGER,
toEnd INTEGER,
timeStarted INTEGER,
timeFinished INTEGER,
oidCount INTEGER,
stopReason TEXT

);

CREATE TABLE results (
walk_id INTEGER,
name TEXT,
oid TEXT,
type INTEGER,
value BLOB

);

- 180 -

Using the SNMPWALK -o Option

Table: walks

The walks table stores one row for each snmpwalk command. Each walk will
receive a unique id that is used to identify it (id). The other columns are:

address

the address of the snmpwalk target device
port

the udp port number of the snmpwalk target device
startOid

the starting OID specified in the snmpwalk command
snmpVersion

the SNMP version specified
pktTimeout

the packet timeout specified
pktRetries

the packet retry count specified
maxOids

the maximum number of OID's specified
toEnd

a boolean flag indicating that the walk should proceed to the end (i.e. don't limit
by startOid).
timeStarted

the UTC timestamp when the walk was started
timeFinished

the UTC timestamp when the walk was completed
oidCount

the number of OID rows walked
stopReason

text indicating the reason the walk stopped where it did
Table: results

The results table stores a row for each entry of one snmpwalk, as specified by id in
the walks table.

walk_id

the id of the walk (references walks.id)
oid

the text of the OID naming the SNMP variable
type

the ASN.1 type integer for the SNMP variable
value

the actual, uninterpreted binary value returned by the SNMP agent

- 181 -

Chapter 8: Troubleshooting Probes

Accessing the SQLite Data

On Mac OS X 10.4, you can use the built-in sqlite3 command to access the data in
the SQLite database file:

 $ sqlite3 foo

sqlite> .mode csv
sqlite> select * from walks;

1,"192.168.1.1",161,1.0,0,10000,3,2000,0,1178801645,1178801685,0,"No
answer received"

2,"192.168.1.2",161,1.3,0,10000,3,2000,0,1178801708,1178801895,2000,"-
Finished (2000 OIDs found)"
sqlite> select count(*) from results where walk_id = 1;
0
sqlite> select count(*) from results where walk_id = 2;
2000
sqlite> select * from results where walk_id = 2 order by oid limit

5;
2,"1.3.6.1.2.1.1.1.0",4,"HP J4813A ProCurve Switch 2524..."
2,"1.3.6.1.2.1.1.2.0",6,"+\006\001\004\001\013\002\003\007\013\023"
2,"1.3.6.1.2.1.1.3.0",67,"\035\330J\375"
2,"1.3.6.1.2.1.1.4.0",4,"Bill Fisher"
2,"1.3.6.1.2.1.1.5.0",4,"HP ProCurve Switch 2524"

There is a Firefox add-on called "SQLite Manager" that opens and displays SQLite
database files. This makes it a cross-platform tool, requiring only Firefox 3.5 or
greater, plus a small download.

To install SQLite Manager:

1. Start Firefox 3.5 or newer - Tools -> Add-ons - Click Get Add-ons
2. Enter "SQLite" into the Search field and press Return.
3. Double-click the "SQLite Manager" item to install it. Restart Firefox when

instructed.

To use SQLite Manager:

1. Tools -> SQLite Manager to open it.
2. Use the Database -> Connect Database (within the window) to open a saved

SQLite database
3. Click the results table to view it.

- 182 -

InterMapper HTTP API
InterMapper provides an HTTP API for retrieving data from, and sending data to
the InterMapper server ("exporting" and "importing", respectively). The API allows
an external program to use standard HTTP commands (GET, POST) and a straight-
forward URL syntax to make these requests.

These are the major features of the HTTP API:

l File Import/Export gives access to files of the InterMapper Settings folder.
l Table Import/Export gives access to the tables in the same formats that
are currently available through the RemoteAccess Import and Export com-
mands.

l Acknowledgements - send Basic Acknowledgements to an InterMapper
server using HTTP. This allows you to acknowledge down devices from
phones, browsers, or scripts.

Through these API interfaces you can accomplish a number of scripting tasks. Two
scripts are provided, allowing you to "clone" the InterMapper Settings directory
through a script.

Note: To use the HTTP API interface, you must connect as an InterMapper user
that is a member of the InterMapper Adminstrators group, as specified in the
Users pane of the Server Settings window.

The features of the HTTP API are described in these topics:

Importing & Exporting Files (Pg 184) - How to access the InterMapper Settings dir-
ectory's file system.

Importing & Exporting Tables (Pg 187) - How to import or export map data dir-
ectly.

Acknowledging Devices (Pg 189) - How to acknowledge down devices or interfaces
using the HTTP API.

Scripting Examples (Pg 191) - Examples of the "clone" scripts and much more.

- 183 -

Chapter 9

Chapter 9: InterMapper HTTP API

Importing & Exporting Files
Most of the files in the InterMapper Settings folder can be accessed through the
HTTP API. These include:

l Custom Icons
l Fonts
l Maps
l MIB Files
l Probes
l Sounds
l Web Pages

These folder contents may be exported, but not imported:

l Extensions
l Certificates folder
l Tools

The contents of the following folders are not currently available:

l Chart Data folder
l InterMapper Logs folder
l Deleted and Disabled Maps folders

All other files are served up as binary files with a MIME type of application/octet-
stream. Each file has a corresponding URL to retrieve its contents; each folder in
InterMapper Settings also has a URL to retrieve the list of URLs for the files in that
folder.

All URLs given below are relative to a URL composed of the InterMapper Server
address and the webport, as defined in the server settings. For example, in the fol-
lowing discussion a URL of /~files would imply the full URL (either http: or
https:):

http://imserver_address:webport/~files

Example: The URL above produces a text listing the URLs for the folders in the
InterMapper Settings that can be accessed over HTTP; this is provided for the con-
venience of scripts that might want to access all files.

- 184 -

Importing & Exporting Files

A request for following URLs provides a text listing of the URLs for the files within
the corresponding folder in the InterMapper Settings folder.

InterMapper Settings folder Corresponding URL

Custom Icons /~files/icons

Extensions /~files/extensions

Fonts /~files/fonts

Maps /~files/maps

MIB Files /~files/mibs

Probes /~files/probes

Sounds /~files/sounds

Tools /~files/tools

Web Pages /~files/webpages

- 185 -

Chapter 9: InterMapper HTTP API

HTTP file imports

To import these files over HTTP, issue a POST request to the appropriate URL with
the file contents as a payload; the MIME type should be application/octet-stream.

Icons

You can import icons via HTTP as described above. The URL should take the fol-
lowing form:

http://imserver:port/~files/icons/Folder/Filename.type

If the file type is a valid image file (jpeg or png), it will be available to use imme-
diately.

Sample curl commands (command-line) to use this facility might look like this
(should be all on one line):

HTTP: curl --data-binary "@sample.png" http://-
localhost:8080/~files/icons/Default/sample.png
HTTPS: curl -k --data-binary "@sample.png"
https://localhost/~files/icons/Default/sample.png

Note: the -k option for HTTPS ignores an unsigned certificate.

Maps

You can import maps or map data using the HTTP API.

A sample curl command line to import a map file should take this form:

$ curl --user admin:Pa55w0rd --data-binary @/path/to/local/map_file
http://imserver:port/~files/maps/map_file

- 186 -

Importing & Exporting Tables

Importing & Exporting Tables
Table-based Import/Export

The table-based functions of the InterMapper HTTP API match the capabilities of
the Import -> Data file... and Export -> Data file... commands of InterMapper
RemoteAccess (available from the File menu). These import and export a number
of "tables" of information about the devices being monitored. These tables include:

l Devices
l Interfaces
l Vertices
l Maps
l Notifiers
l Users
l Schema

These tables have detailed descriptions in the Advanced Data Import/Export sec-
tion of the InterMapper User Guide. The URLs for importing and exporting have the
following format:

http://imserver:port/~export/tablename.format? (options)

Supported formats are:

l .tab - save as a tab-delimited text file
l .csv - save as a comma-delimited text file
l .xml - save as an XML format file
l .html- display as HTML directly in the browser

The primary option is "fields=...." The list of valid fields are listed in the "schema"
export. For example, this query:

http://imserver:port/~export/schema.html

provides a list of the supported tables and the fields for each table in an HTML
format that you can view right in the browser. Other examples include:

http://imserver:port/~export/devices.tab

provides a list of all devices on active maps as a tab-delimited file. This URL:

http://im-
server:port/~export/devices.tab?fields=id,name,macadress,address

provides a list of all devices on active maps, but only includes the ID, Name,
MACAddress and Address fields.

- 187 -

http://intermapper.com/go.php?to=intermapper.devguide

Chapter 9: InterMapper HTTP API

Importing Table-based Data

An external program can also import table information with an
HTTP POST operation by including the table data as the payload.

http://imserver:port/~import/filename

The filename in this URL is written to the log file, but is otherwise ignored. It is not
used to determine the data to import, nor is it used to specify where the data goes.
InterMapper examines the directive line of the attached file to determine what
information is imported from the file. It follows the same logic that is used when
importing data using the Import->Data File... command available from Inter-
Mapper RemoteAccess's File menu.

A sample curl command line to import map data should take this form:

$ curl --user admin:Pa55w0rd --data-binary @/path/to/import/file
http://imserver:port/~import/file

- 188 -

Acknowledging with HTTP

Acknowledging with HTTP
You can perform a Basic Acknowledgement of a device by issuing a POST to a URL
of this format:

http://im-
server-
:port/mapid/device/deviceIMID/*acknowledge.cgi?message=URL+encoded+string

where:

l mapid = the mapid of the corresponding map.
l deviceIMID = the IMID of the device you wish to acknowledge.
l message: requires a URL-encoded text string

There are several ways of finding these values:

l Look in the web interface at the status window for a device, remove the trail-
ing "!device.html" at the end, and replace that with "*ac-
knowledge.cgi?message=....".

l Review the device table (you can view it using the HTTP API) and get the
MapId and IMID.

Example: This curl command sends the POST with the proper string to acknow-
ledge the device:

curl --user admin:Pa55w0rd http://im-
server-
:port/mapid/device/deviceIMID/*acknowledge.cgi?message=URL+encoded+text+string
-d "dummy post data"

Notes:

l This command responds with a web page, which makes sense when acknow-
ledging through a browser, but less so when using curl. As a result, HTML
code is sent to curl, which sends it to stdio. The returned code can be
ignored, logged, or parsed as needed.

l The curl parameter -d "dummy post data" causes curl to send the com-
mand as using the HTML POST method, rather than the GET method.

- 189 -

Chapter 9: InterMapper HTTP API

Example: This curl command retrieves the full list of devices and each device's
address, MapID and IMID

curl --user admin:Pa55w0rd http://im-
server:port/~export/devices.tab?fields=MapId,IMID,address,name

Example: You can also use this expression in Python to create the URL to POST:

"http://imserver:port/%s/device/%s/*acknowledge.cgi?message=%s" %
(mapId, IMID,urllib.urlencode([('message', messageStr)]))

- 190 -

HTTP API Scripting Examples

HTTP API Scripting Examples
Two command line script examples are included here; these scripts provide good
examples of the use of the InterMapper HTTP API:

l Unix shell script - for Unix/Linux platforms
l Windows vbscript - for Windows platforms

Notes:

l These scripts are not installed on your InterMapper server.
l If you copy the scripts, make sure you are copying from the online version of
this guide, available at http://download.intermapper.com/docs/DevGuide/.
Copying from the PDF version may result in unreliable results, caused by
unwanted line breaks.

l Both scripts make a copy of the InterMapper Settings directory.
l Both scripts assume they are invoked from the destination directory rather
than trying to look it up - this is intended to make testing easier. HelpSystems
recommends that you create a dummy InterMapper Settings folder some-
place and try the synchronization to that (the destination directory doesn't
even require that InterMapper is installed, only the script). The remote server
does not need to be the same platform as the destination machine.

l The destination directory should not have an active InterMapper running in it,
as the script assumes that it can replace files at will.

The following URLs are used to access the folders:

InterMapper Settings folder Corresponding URL

Custom Icons /~files/icons

Extensions /~files/extensions

Fonts /~files/fonts

Maps /~files/maps

MIB Files /~files/mibs

Probes /~files/probes

Sounds /~files/sounds

Tools /~files/tools

Web Pages /~files/webpages

Unix shell script

File location: The Unix shell script assumes that the current working directory is
the "Temporary" folder inside the destination InterMapper Settings.

The script requires bash, curl, tr, grep, sed and awk. to be installed.

- 191 -

http://download.intermapper.com/docs/DevGuide/

Chapter 9: InterMapper HTTP API

Unix script options

clone_im.sh [options]
-r [remote_host_name]
-t [remote_port]
-u [remote_user]
-p [remote_password]

Defaults:
remote_host_name = "localhost"
remote_port = 8080 (this is the InterMapper web access port)
remote_user = "admin"
remote_password = "admin"

Example:
clone_im.sh -r nitro.dartware.com -t 8080 -u IMuser -p UsErpaSS

Windows vbscript

File location: The Windows vbscript assumes that the current working directory
is the destination machine's InterMapper Settings folder.

Windows script options

clone_im.vbs
/host:[remote_hostname]
/port:[remote_port]
/user:[remote_user]
/password:[remote_password]

Defaults:
remote_host_name (none, must be specified)
remote_port = 80
user (none, uses auto-login unless specified)
password (none, uses auto-login unless specified)
secure = false

Example:
clone_im.vbs /host:nitro.dartware.com /port:8080 /user:IMuser /pass-
word:UsErpaSS /secure:true

Known bugs

l The Unix version does not yet support a "secure" switch.
l The Unix version should not have default username and password, to use the
auto-login if that's available.

l The Unix version should require the current directory to be the top-level of
the destination InterMapper Settings directory, not the "Temporary" sub-
directory.

- 192 -

HTTP API Scripting Examples

clone_im.sh

#! /bin/bash

Synchronize InterMapper Settings folder from a remote host with
InterMapper SDK
#
Requires curl and gnu awk

remote=localhost
port=8080
user=admin
password=admin
auth=
while getopts 'r:t:u:p:' OPTION ; do

case $OPTION in
r) remote="$OPTARG"

;;
t) port="$OPTARG"

;;
u) user="$OPTARG"

;;
p) password="$OPTARG"

;;
?) printf "Usage: %s -r remotehost\n" $(basename $0) >&2

exit 2;;
esac

done

if ["$user"] ; then
auth="--user $user:$password"

fi

This script requires InterMapper to be stopped before running.
#/etc/init.d/intermapperd stop

Get list of top-level file directories from InterMapper
topdirs=$(curl $auth -s http://$remote:$port/~files | tr '\r' '\n')

for dir in $topdirs ; do
Get list of files in this directory
filelist=$(curl $auth -s $dir | tr '\r' '\n')

webdir=$(basename $dir)
echo "Processing $webdir..."
localdir=""

echo $filelist | grep "does not exist" >& /dev/null
if [$? != 0] ; then

Convert the web path into the corresponding Setting folder path
case $webdir in

icons) localdir="Custom Icons" ;;
sounds) localdir="Sounds" ;;
mibs) localdir="MIB Files" ;;
probes) localdir="Probes" ;;
tools) localdir="Tools" ;;
webpages) localdir="Web Pages";;
fonts) localdir="Fonts" ;;

- 193 -

Chapter 9: InterMapper HTTP API

extensions) localdir="Extensions" ;;
maps) localdir="Maps" ;;

esac

for file in $filelist ; do
Get this file and move it into the proper location

curl $auth -s -O $file
filename=$(basename $file)

Decode the URL to find the real filename
Modified from http://do.homeunix.org/UrlDecoding.html to work

with gnu awk
local_filename=$(echo $filename | \

sed 's/+/ /g'| \
sed 's/\%0[dD]//g' | \
awk '/%/{while(match($0,/\%[0-9a-fA-F][0-9a-fA-F]/))

{$0=substr($0,1,RSTART-1)sprintf("%c",strtonum("0x"substr
($0,RSTART+1,2)))substr($0,RSTART+3);}}{print}')

This version works with BSD awk
local_filename=$(echo $filename | \
sed 's/+/ /g'| \
sed 's/\%0[dD]//g' | \
awk '/%/{while(match($0,/\%[0-9a-fA-F][0-9a-fA-F]/)){$0=su-

ubstr($0,1,RSTART-1)sprintf("%c",0+("0x"substr($0,RSTART+1,2)))substr
($0,RSTART+3);}}{print}')

Make sure the destination directory exists
local_dirname=$(dirname "$local_filename")
mkdir -p "../$localdir/$local_dirname"

echo " " $(basename "$local_filename")
mv $(basename $file) "../$localdir/$local_filename"

done
fi

done

Preferences file is separate, since it's stored in the top level of
the InterMapper Settings directory
curl $auth -s -O http://$remote:$port/~files/Preferences
mv Preferences ../

restart InterMapper
#/etc/init.d/intermapperd start

- 194 -

HTTP API Scripting Examples

clone_im.vbs

Rem Synchronize with a remote InterMapper server

Option Explicit

Dim remoteAddr, remotePort, remoteUser, remotePassword, secureCon-
nection
Dim urlBase, topLevelDirs, dir, fileList, file, fileName, fileData
Dim webDir, localDir, localFileName

'**-

' Parse command line arguments

If WScript.Arguments.Named.Exists("host") Then
remoteAddr = WScript.Arguments.Named.Item("host")

Else
WScript.Echo "Must specify a remote InterMapper host to synchronize

with"
WScript.Quit

End If

If WScript.Arguments.Named.Exists("port") Then
remotePort = WScript.Arguments.Named.Item("port")

Else
remotePort = 80

End If

If WScript.Arguments.Named.Exists("user") Then
remoteUser = WScript.Arguments.Named.Item("user")

End If

If WScript.Arguments.Named.Exists("password") Then
remotePassword = WScript.Arguments.Named.Item("password")

End If

if (WScript.Arguments.UnNamed.Count > 0) Then
secureConnection = (WScript.Arguments.UnNamed.Item(0) = "secure")

End If

'**-

' Get list of supported folders
urlBase = MakeURLBase(remoteUser, remotePassword, remoteAddr,
remotePort, secureConnection)

topLevelDirs = Split(FetchURL(urlBase, remoteUser, remotePass-
word,true), VbCrLf, -1, vbBinaryCompare)

- 195 -

Chapter 9: InterMapper HTTP API

For Each dir In topLevelDirs
if dir <> "" Then

' Convert the top-level name in the URL to the local folder name
webDir = Right(dir, Len(dir) - Len(urlBase) - 1)
Select Case webDir
Case "icons"
localDir = "Custom Icons"

Case "sounds"
localDir = "Sounds"

Case "mibs"
localDir = "MIB Files"

Case "probes"
localDir = "Probes"

Case "tools"
localDir = "Tools"

Case "webpages"
localDir = "Web Pages"

Case "fonts"
localdir = "Fonts"

Case "extensions"
localDir = "Extensions"

Case "maps"
localDir = "Maps"

End Select

' Get the files in this folder
fileList = Split(FetchURL(dir, remoteUser, remotePassword, true),

VbCrLf, -1, vbBinaryCompare)
For Each file In fileList
If (Len(file) > len(dir)) Then
localFileName = Right(file, len(file) - len(dir) - 1)

fileName = localDir & "\" & URLDecode(localFileName)
fileData = FetchURL(file, remoteUser, remotePassword, false)
MakeFolderFor fileName
SaveBinaryData fileData, fileName

End If
Next

End If
Next

' Preferences file is not contained in a folder on the server.
fileData = FetchURL(urlBase & "/Preferences", remoteUser, remotePass-
word, false)
SaveBinaryData fileData, "Preferences"

'**-

'**-

'**-

Function URLDecode(str)

- 196 -

HTTP API Scripting Examples

URLDecode = Replace(Unescape(Replace(str, "+", " ")),"\%2F","\\")
End Function

Function FetchURL(url, user, password, textonly)
Dim http, result

Set http = CreateObject("WinHttp.WinHttpRequest.5.1")
http.Open "GET", url

If user <> "" Then
http.SetCredentials user, password, 0

End If

http.Send

if http.Status = 200 then
if textonly Then
result = http.ResponseText

Else
result = http.ResponseBody

End If
Else
result = ""

End If

Set http = Nothing
FetchURL = result

End Function

Sub MakeFolderFor(filename)
'Recursively make folders
Dim fso, i
Redim dirstack(0)

Set fso=CreateObject("Scripting.FileSystemObject")
dirstack(0) = fso.GetParentFolderName(filename)

While (dirstack(ubound(dirstack)) <> "")
Redim preserve dirstack(ubound(dirstack) + 1)

dirstack(ubound(dirstack)) = fso.GetParentFolderName(dirstack
(ubound(dirstack) - 1))
WEnd

For i = ubound(dirstack)-1 To 0 step -1
If Not fso.FolderExists(dirstack(i)) Then
fso.CreateFolder(dirstack(i))

End If
Next

Set fso=Nothing
End Sub

Function MakeURLBase(user, password, host, port, secure)
Dim protocol, fullhost

- 197 -

Chapter 9: InterMapper HTTP API

If secure Then
protocol = "https://"

Else
protocol = "http://"

End If

If (port <> "") Then
fullhost = host & ":" & port

Else
fullhost = host

End If

MakeURLBase = protocol & fullhost & "/~files"
End Function

Function SaveBinaryData(arrByteArray, strFileName)
Dim objBinaryStream
Set objBinaryStream = CreateObject("ADODB.Stream")
objBinaryStream.Type = 1
objBinaryStream.Open()
objBinaryStream.Write(arrByteArray)
objBinaryStream.SaveToFile strFileName, 2

End Function

- 198 -

Retrieving Collected Data
InterMapper Reports Server is a PostgreSQL database that retrieves data from an
InterMapper server and saves it for use by external programs.

Although the InterMapper Reports UI is the easiest way to get data from the data-
base, you can connect to the InterMapper Reports Server database using your own
techniques. Several short example reports in Crystal Reports and OpenRPT are
available, as well as several example perl scripts. The perl scripts require DBI and
DBD::pg.

These scripts have been packaged and zipped and placed on our downloads server,
and are available at:

http://download.intermapper.com/sql/sql_examples.tar.gz

Please feel free to share your own, as well.

If you want to create your own queries to retrieve data, see Creating SQL Queries
(Pg 200).

InterMapper Database Schemas

The most up-to-date schema for the InterMapper Database is available at:

https://[Your InterMapper Database Server URL]:8182/~im-
database/schemaddl.html

It is also available at:

http://download.intermapper.com/schema/imdatabaseschema.sql

- 199 -

Chapter 10

http://download.intermapper.com/sql/sql_examples.tar.gz
http://download.intermapper.com/schema/imdatabaseschema.sql

Chapter 10: Retrieving Collected Data

Creating SQL Queries
You can create your own SQL queries to retrieve data from InterMapper Database.
The datasample tables contain the 5-minute, hourly and daily samples derived
from the original data values. The recommended approach for retrieving data is to
get it from these tables. For more information, see InterMapper Database
Schemas (Pg 199).

You can also query individual data values, but this is much slower than querying
the datasample tables. In InterMapper 5.4 and earlier, individual data values
were stored in the datapoints table. They are now stored in the datastore
table. Existing queries on the datapoints table must be rewritten to use the data-
store table instead. This applies only if you have written queries in this or a
related construct:

SELECT FROM datapoint WHERE dataset_id = 5 AND data_time BETWEEN a
AND b

To retrieve data from the datastore table, use the load_data() function,
described below.

Using the load_data() function

Use this function only if you have an existing query on the datapoint table, or if
you actually need the individual raw values. In the overwhelming majority of cases
you should query the datasample tables as described above, since they're faster
and easier to access.

The syntax for the load_data() function is as follows:

load_data([dataset id],[datatime start],[datatime end])

For example, to retrieve data for dataset_id = 5 between data_times a and b,
use this recommended syntax:

SELECT data_time, data_value FROM load_data(5, a, b)

The explicit column list is not required, but it is recommended. If you use SELECT
* rather than an explicit column list, the function returns a single column of the
built-in composite-value type, containing both values. You can still reference the
values from this composite data type, but you won't be able to treat it as you
would a regular Postgres column.

- 200 -

Using the load_data() function

The load_data() function acts as a table source, and accepts the built-in Postgres
infinity and -infinity timestamps.:

SELECT data_time, data_value
FROM load_data(1, '2011-11-09 00:00:00', 'infinity')
ORDER BY data_time

You can also use UNION to combine sources:

SELECT 5 as dataset_id, data_time, data_value
FROM load_data(5, '2011-11-09 00:00:00', 'infinity')
UNION SELECT 6 as dataset_id, data_time,data_value
FROM load_data(6, '2011-11-09 00:00:00', 'infinity')
UNION SELECT 14 as dataset_id, data_time, data_value
FROM load_data(14,'2011-11-09 00:00:00', 'infinity')
ORDER BY dataset_id, data_time

- 201 -

Customizing Web Pages
InterMapper comes with a set of default web page layouts, and uses them to gen-
erate web pages. Use this section to learn how to customize those pages by modi-
fying the files that InterMapper uses to create the pages delivered by its web
server.

InterMapper's built-in web server generates pages based on files in its Web Pages
folder. See Web Pages Folder (Pg 217) for more information.

When a web request is received, InterMapper finds a corresponding file (called a
target file) to use as the response. The target file is then formatted according to
information specified a template file. The resulting file is returned to the user's
web browser.

InterMapper uses the following elements to control the appearance of the web
pages returned from its web server:

l Target files (Pg 203) - Contain the main text of the various pages sent by
the server

l Template files (Pg 205) - Control the overall format of the web pages
l Directives (Pg 206) - Commands within files to control the formatting of the
web pages

l Quoted links (Pg 209) - Make it easy to create links to other pages.
l Macros (Pg 210)- Elements you can insert in your templates and target files
to show blocks of useful InterMapper information.

l Web Pages Folder (Pg 217) - Controls which web pages are available to
Administrators and Guests.

l Mime Types (Pg 219)- Associates templates or target files with specific
MIME types.

Tip: The target and template files are simply text files. You may edit them with
any text editor. On certain platforms, you must have the correct permissions to
edit them.

Reloading Changed Web Page Files

The changes you make to these files do not take effect until InterMapper reloads
them.

To force InterMapper to reload the Web Page files:

1. From the Edit menu, choose Server Settings...
2. From the Server Configuration category, choose Web Server. The Web

Server settings panel appears.
3. Stop and then restart the Web Server. The changed web pages are reloaded.

- 202 -

Chapter 11

Chapter 11: Customizing Web Pages

Target Files
When InterMapper receives a request for a web page, the requested URL is parsed
to determine the target of the request. This target file contains the text content of
the desired page. The target file may contain HTML markup if desired.

In addition to the page's text, the target file can contain these other elements:

l Directives (Pg 206) - Commands that describe or modify the way a page
should be displayed.

l Quoted Links (Pg 209) - Provide a quick way to create a link to another page
using its name, rather than specifying its full URL. If a string is placed in
double-quotes (") and the text matches the title of another InterMapper web
page, a link is created.

l Macros (Pg 210) - InterMapper variables that are replaced with text or
formatted HTML in the final web page. The macro may be replaced with a
static string, a device's name or network address, the contents of another
file, or other information. Macros are composed of keywords and optional
parameters, and are enclosed in "${...}".

Target File Example:

#title "This is a test page"
This is some text to be displayed in a
web page. The page's title is "This is a test page", while the remain-
ing
text is displayed in the "body" of the page. The text may also con-
tain
plain text, HTML tagged text such as bold and <i>italic</i>,
and macros, such as the ${date} macro, which displays today's date.

l The first line is a directive that sets the title of the page to be displayed.
l The text between double-quotes is placed in <title>...</title> tags in the
resulting web page.

l The remainder of this example is placed in the <body>...</body> section of
the resulting page. The macro ${date} will be replaced by the current date
when the page is displayed.

Quoted Links

Note that the text "This is a test page" will be displayed as a link to its own
page, since it is a string in quotes that matches the #title of a web page (its
own). Note, too, that the text "body" could be a link to a page with a title of "body".
It is not an error if no such page exists: in that case, InterMapper displays the
quoted string in place. For more information see Quoted Links (Pg 209).

- 203 -

Target Files

What Happens When a Target File Is Read?

As the target file is read, InterMapper processes the directives, then the expands
the macros and creates the tags for any quoted links it encounters. The web server does not insert
any white space or paragraph marks (such as <P>) when it encounters carriage
returns, etc.

Built-in Target Files

InterMapper provides a number of built-in target files. These file names all begin
with "!", and are required because InterMapper refers to them explicitly. Here are
some of the built-in files:

l !index.html - Displays the default page, when none is specified in the URL.
l !document.html - Displays a graphical image of the specified map.
l !network.html - Displays detailed information about the specified network.
l !device.html - Displays detailed information about the specified device.
l !link.html - Displays detailed information about the specified link.
l !chart.html - Displays the specified strip chart.

Note: The !network.html, !device.html, !link.html, and !chart.html files are tar-
gets intended to display information about a specific network, device, link or chart.
The macros that display lists of maps, networks, devices, or charts create links to
these targets. The easiest way to create custom versions of these targets is to edit
them directly.

- 204 -

Chapter 11: Customizing Web Pages

Template Files
To allow all the web pages to have the same look, InterMapper uses template files
to control the formatting of pages. A template file is composed of HTML commands
that provide the skeleton for a web page. In addition, template files often contain
macros and quoted links that are replaced by appropriate text when the page is
generated.

Template File Example

Here is a simple template file that could be used with InterMapper:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 3.2//EN">
<HTML>
<HEAD>
 <TITLE>${pagetitle}</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
 ${imageref:logo.gif}
 ${bodytext}
 ${include:footer.incl}
</BODY>
</HTML>

This sample contains several important macros:

l ${pagetitle} - Replaced with the text of the #title directive of the target file.
l ${bodytext} - Replaced with the body text of the target file, that is,
everything from the target file that is not a directive.

l ${imageref:logo.gif} - Replaced with an tag that refers to the
logo.gif file in the ~GuestImages folder on the InterMapper server.

l ${include:footer.incl} - Replaced with the contents of the file named 'foot-
er.incl'.

- 205 -

Directives

Directives
A directive is a special command interpreted by the web server to control the way
a page is formatted.

l Directives must start with a "#" in the first column.

Summary of Directives

InterMapper has several directives that can change the way pages are formatted.
They are defined below:

#template #template "othertemplate.html"

A target file may specify a template file with the
#template directive. The #template directive is
optional; if none is present, InterMapper uses the
file named !template.html as the page's tem-
plate.

#title #title "This is a Test Page"

The text in quotes becomes the title of the page - it
enclosed in <title>...</title> tags in the gen-
erated page. The #title directive also provides a
destination for quoted links on other pages.

Every target file must have a #title directive to
give it a name.

You may include a macro within the quoted text of
this directive. This is useful for inserting the device
name or other information into the title of the web
page.

#alt_title #alt_title "Test Page"

The optional #alt_title directive provides a way
to give a page an alternate name that can be used
with a quoted link.

#filename #filename "otherpage.html"

The optional #filename directive causes Inter-
Mapper to treat the file as if named with the quoted
string.

For example, a target file named "xindex.html"
could have a directive of
#filename "!index.html". This causes the target
file to be used in place of the file named "!in-
dex.html" if its version number is higher. This can
be useful for debugging, or for creating alternate
versions of pages.

- 206 -

Chapter 11: Customizing Web Pages

#version #version "2.1"

The optional #version directive determines which
file is used when there are two or more instances
of the same filename (as a result of using #fi-
lename directives.)

The optional #version directive is used to break
"ties" between several files having the same name
to determine which should be used. This comes
into play in several cases:

l InterMapper has its own internal copy of the
web template files, which it uses to create the
original set on disk.

l If you edit one of the default web template
files, you could can change its #version to
make it take precedence over InterMapper's
built-in copy.

l If you edit the file without changing the #ver-
sion, its date-last-modified value is later,
causing it to take precedence over Inter-
Mapper's built-in copy.

l If you install a new version of InterMapper
with updated web files, the #version value is
incremented, causing the built-in copy to take
precedence over the user-edited files,

Note: The user files are not overwritten.
l Through the use of the #filename directive, it
is possible to have two files on-disk that have
"essentially" the same name. One
could be named "foo.html", and the other
(named something else) can use the #fi-
lename directive to set its "virtual filename"
to "foo.html". In such a case, the #version is
used to determine which file takes pre-
cedence.

Version numbers must be in a 'digit.digit' format.
InterMapper uses the file with the highest version
number. This is useful for debugging as well as
experimenting with alternate pages.

If #version directive is not present in the file, the
default version, "1.0" is used.

#redirect #redirect "otherpage.html"

The #redirect directive causes the InterMapper to
find otherpage.html and use that in place of the
original target file.

- 207 -

Directives

This can be used to force a well-known page (such
as !index.html) to display a user-selected page.

Note: This directive creates a static redirection
that works only for web pages that exist on the
disk when the web server is started. To redirect to
web pages that are generated dynamically by Inter-
Mapper (such as map web pages), use the HTML
refresh meta tag instead.

#target #target "window_name"

The #target directive forces a page to be opened
in a new window named "window_name".

When generating the web page, InterMapper gen-
erates an HREF link with a ...target = "window_
name" ... reference. This causes the detailed
information to appear in a separate window when
the user clicks a map's device or link.

- 208 -

Chapter 11: Customizing Web Pages

Quoted Links
You can create a link to another page by entering the page's title in double-quotes.
For example, the text "Test Page" creates a link to a page with a #title or
#alt_title directive that contains the text "Test Page".

Note: Two target files may have the same #title or #alt_title. When this hap-
pens, InterMapper chooses one of the target files, but you cannot predict which
one is chosen.

Preventing a Quoted String From Becoming a Link

If you place a string in quotes, and the string that does not match another page's
#title or #alt_title, InterMapper displays the quoted string as-is.

You may want text to appear in quotes, even when the text matches another
page's #title or #alt_title. (Remember, you can create quoted links only to
pages which have #title or #alt_title directives, and only quoted text that
matches one of those directives results in a link.)

To prevent a string in quotes from being interpreted as a quoted link:

l Place backslashes ("\") in front of both the first and second quote character.

- 209 -

Macro Reference

Macro Reference
A macro is a text string with the format ${macroname:other-information}. The
macroname is required, and some macros use or require other-information which
follows the ":". The entire macro is replaced by the appropriate text when the page
is generated.

Macros fall into these general categories:

l The Include Macro (Pg 210)
l Macros that generate "content" on an InterMapper web page (Pg 210)
l Macros that describe InterMapper and its environment (Pg 211)
l Macros to place images onto a page (Pg 212)
l Macros that control the interval between page refreshes (Pg 214)
l Macros related to links and URLs (Pg 214)

The Include Macro

Your template files and target files may include other files.

${include:file-to-be-
included.html}

The named file is inserted into the web page. The file
must be in the same folder.

Macros that generate the "content" of an InterMapper web page

InterMapper often uses these macros either as the ${bodytext} of the page, or as
a major part of a page's contents. All the macros below work on the map named in
the request URL. If the URL is for a page in the ~admin directory, InterMapper dis-
plays information about all items in all maps.

${fullstatus} shows a list of all the devices and links for
the map named in the URL.

${errorstatus} Shows only the devices and links which are
in warning or alarm states, or down for the
named map.

${errorstatus_orig} Output the original "errors" status report.
Differences from ${errorstatus}:

l ${errorstatus_orig} doesn't show
device alarms.

l ${errorstatus} first outputs inter-
faces in error, then interfaces with
high utilization.
${errorstatus}lists interfaces in ran-
dom order.

${currentoutages} Shows the list of current outages -- devices
or links that are currently in warning,
alarm, or are down in the named map.

${currentlinkoutages} Output a table of current interface outages.
The table's column names are Date, Time,
Interface and Duration.

- 210 -

Chapter 11: Customizing Web Pages

${previousoutages} Shows the list of devices that had been lis-
ted as outages but have since returned to
normal.

${previousoutages:hours=xx} Shows the list of previous outages within
the last xx hours.

${previousoutages:maxrows=x} Shows a list of the last x previous outages.
${maplist} Shows an HTML unnumbered list () of

the maps available.
${chartlist} Outputs a sorted list of charts from the cur-

rent context, one per line with each line pre-
ceded by a tag. You are required to
supply your own or tags. Each
chart title is a hyperlink to the related chart
web page.

Within an administrator context, ${chart-
list} generates a list of all charts. In a
"per-map" context, ${chartlist} gen-
erates a list of charts from the current
map.

${chartname} Outputs the title of the chart related to the
current web page. If you are not on a
chart-related page, the output is "".

Note: Similar to ${mapname}
${maplistwithcharts} Shows an HTML unnumbered list of the

maps available, with sub-lists of the charts
for each map.

${include:file-to-be-
included.html}

Inserts the specified file into the web page.

Miscellaneous macros that describe InterMapper and its environment

${abouthtml} Shows the "About" page with the current ver-
sion of InterMapper.

${statshtml} Shows InterMapper's statistics: uptime,
memory usage, etc.

${httpuserid} The name the user typed when asked for authen-
tication.

${httplocaladdress} Output the IP address of the web server's side
of the connection. If the InterMapper server is
multi-homed, this will be the local side IP
address of the current TCP connection.

Note: Use caution with this address; URL's pro-
duced using this address may break in NAT situ-
ations.

${httpremoteaddress} The IP address of the remote browser.

- 211 -

Macro Reference

${intermapperaddress} The IP address of this InterMapper server.
${version} The version of this copy of InterMapper.
${date} The current date.
${time} The current time.

${timestamp} Timestamp in Unix epoch format.
${imagesuffix} Set to ".png" if the web client can display PNG

images, or ".jpeg" otherwise.
${telnetserverurl} The telnet: URL that connects to this Inter-

Mapper Telnet server.
${webserverurl} The http: URL that connects to this Inter-

Mapper server.
${mapname} The current map's name.

${deviceaddress} The IP or AppleTalk address of the particular
device. For anything that isn't a device, an
empty string is returned.

${deviceid} Outputs the device ID of the device related to
the current page, in the form: "gMMMM-rNN". If
the current page is not device-related, output
"".

${devicelist} Outputs a table showing the device list for the
current context. The table's columns are
Status, Name, Condition, Date, Time,
Probe, and Port.

Within an administrator context, ${devicelist}
generates a list of all devices. In a "per-map"
context, ${devicelist} generates a list of
devices from the current map.

${devicelist_kml} Generates a device list in KML format for use by
Google Earth.

${devicename} The DNS name or AppleTalk NBP name of the
particular device. It is an empty string for any-
thing that isn't a device.

${ifadmin: ADMIN :
NONADMIN }

Outputs ADMIN if the user has admin privileges.
Otherwise outputs NONADMIN.

${pagetitle} Displays the value set by the #title directive
${SetNameFieldWidth:xx} Set the width of the name field. InterMapper

pads the name up to xx characters wide. Use -1
to set the width of the field to the width of its
contents. The default width is 20 chars.

Macros to place images onto a page

${im-
agere-

f:IMAGEFILE

Creates an tag to place an image on the page.

Example:

- 212 -

http://code.google.com/apis/kml/documentation/

Chapter 11: Customizing Web Pages

[,tags]} ${imageref: photo, class='grade4'}

outputs

Notes:
Unlike every other macro, this one uses a comma-delimiter
in the parameter section instead of a colon.

This macro searches the images folder alphabetically for the
first file whose name matches the IMAGEFILE parameter. If
you have two files, "photo.gif" and "photo.png", photo.gif is
found first.

${imagesuffix} Set to ".png" if the web client can display PNG images, or
".jpeg" otherwise.

${in-
termapperlogo}

Creates an <img... > tag that includes the "Made with Inter-
Mapper" logo image.

*chart Displays a strip chart, generally has a suffix of
${chart}.${imagesuffix} to send the desired format for
the client's browser. Takes parameters of width (for the
chart, in pixels) and the other parameters of the URL.

Usage:

<IMG SRC-
="*chart.${i-
imagesuffix}?${clientwidth}&${httpparams}">
or
<IMG SRC-
C="*chart.${imagesuffix}?width=300&${httpparams}">

*popuptext.html Displays the contents of the current device, network, or inter-
face Status Window (these were formerly called "pop-up win-
dows") as HTML.

Usage:

${include: *popuptext.html}, generally enclosed in
<pre> ...</pre> tags.

*map Displays an image of the devices, networks, and links (the
"foreground") of the selected map against a transparent back-
ground. The objects in this image match with the *im-
agemap.html, below. Takes an option of a timestamp, to
provide for auto-refresh.

Usage:

<img src-
="/${h-
ttpdocument}/document/main/*map.${imagesuffix}?${timestamp}">

- 213 -

Macro Reference

*mapbg Displays the background image of the selected map. This
provides the customer-selected background to the map as an
image. It takes an option of a timestamp to provide for auto-
refresh.

Usage:

<img src-
="/${h-
ttpdocument}/document/main/*mapbg?${timestamp}">

*im-
agemap.html

Displays an HTML imagemap that corresponds to the map
image; clicking in the image, follows the links in the (auto-
matically-generated) image map.

Usage:

${in-
clude:/${ht-
tpdocument}/document/main/*imagemap.html}

Note: The web pages combine *map with the *mapbg and *imagemap to create a
<div> that superimposes all three items into a single visual unit. See InterMapper
Settings/Web Pages/PerMapHTML/map.html for an example.

Macros that control the interval between page refreshes

InterMapper's web server can automatically refresh a particular web page at a
desired interval. Include these tags on your page to take advantage of this facility.

${htmlrefreshmetatag} Either an empty string or the previous refresh
choice from the web client. (Inserts a <meta
http-equiv="refresh"...> tag on the resulting
page.)

${htmlrefreshmetaoptions} The option list that a web client can choose from.
The current ${htmlrefreshmetatag} value is
selected. Note that your HTML template should
supply the <form><se-
lect>...</select></form> surrounding this
${htmlrefreshmetaoptions} macro.

${jsrefreshoptions} The option list that a web client can choose from,
generated with JavaScript. The current ${htm-
lrefreshmetatag} value is selected. Note that
your HTML template should supply the <form><se-
lect>...</select></form>

Macros related to links and URLs

These macros all return a fully-escaped string, that is, a space character (" ") will
be replaced with a %20; a "?" with %3F; etc.

Here is a sample URL. The result of using this URL is shown in parentheses after
each macro:

 http://localhost/Map1/device/192.168.0.1%3ASNMP/!device.html

- 214 -

Chapter 11: Customizing Web Pages

${webpageurl} The full URL of the requested web page. (e.g., the full URL
as shown above).

${httppath} The full path to the file requested (e.g.,
"/Map1/device/192.168.0.1%3ASNMP/!device.html").

${httpdocument} The top level directory of the page requested. Also an alias
for ${mapname} (e.g., "Map1").

${httpclass} The second level directory of the page requested (device,
chart, link, document, network) (e.g., "device").

${httpinstance} The third level directory of the page requested (e.g.,
"192.168.0.1%3ASNMP").

${httpmethod} The fourth-level part of the page requested (e.g.,
"!device.html").

${ht-
tpinstancepath}

A concatenation of ${httpdocument}, ${httpclass},
${httpinstance} separated by "/" (e.g.,
"/Map1/device/192.168.0.1%3ASNMP").

${httpparam:
NAME}

Outputs the value of the HTTP parameter specified by
NAME. An HTTP parameter is one passed with the ori-
ginating GET request, affixed to the URL following a ques-
tion mark. If there is no HTTP parameter by the given
name, outputs "".

Example, given the following URL:

http://www.ex-
ample.com/TestMap/?color=red&style=bold

${httpparam: color} outputs "red"
${httpparam: style} outputs "bold"
${httpparam: font} outputs "" (because the parameter
doesn't exist)

${httpparams} Outputs all the HTTP parameters from the originating GET
request in their original format. If there were no para-
meters attached to the original request, output "".

Example, given the following URL:

http://www.ex-
ample.com/TestMap/?color=red&style=bold

${httpparams} outputs "color=red&style=bold".
${httpparams_end-

chart}
${httpparams_

nextchart}
${httpparams_pre-

vchart}
${httpparams_

startchart}
${httpparams_

${httpparams_endchart} - Replaces the value of the "end-
time" parameter with the chart's last time. (For scrolling
to the end of the chart).

${httpparams_nextchart} - Replaces the value of the
"endtime" parameter with a new time value that effect-
ively scrolls the chart one page into the future.

${httpparams_prevchart} - Replaces the value of the

- 215 -

Macro Reference

timescale} "endtime" parameter with a new time value that effect-
ively scrolls the chart one page into the past.

${httpparams_startchart} - Replaces the value of the
"endtime" parameter with the chart's starting time. (For
scrolling to the beginning of the chart).

${httpparams_timescale: VALUE} - Replaces the value
of the "timescale" parameter with the specified value.

Note: These five macros are nearly identical to ${ht-
tpparams}. They implement support for chart scrolling and
scaling in the web interface. They generate output only
within a web page associated with a chart.

${anchor: value}
${attr}

Sets the current "anchor" value.

Outputs the current "anchor" parameter value as set using
${anchor: value}. If no "anchor" value has been set, out-
put is "".

Note: These two macros are closely related. ${anchor}
sets the value; ${attr} retrieves it.

Example:

${anchor:class="header"}
Map List
<A HREF="${TelnetServerURL}" ${at-

tr}>Telnet
Home

${anchor:}

In this example, the anchor is set to 'class="header"'.
Then the ${attr} macro is used to place the attribute string
in each link. Afterward, ${anchor:} sets the anchor to an
empty string.

- 216 -

Chapter 11: Customizing Web Pages

Web Pages Folder
Web target files and template files are in the Web Pages folder within the Inter-
Mapper Settings folder. Except for the folders described below, the InterMapper
web server serves out only those files located in the top level of the Web Pages
folder.

Overriding the Built-in Pages

InterMapper ships a single zip archive named BuiltinWebPages.zip.

In order to customize pages, you need to create a directory structure that matches
the structure within BuiltinWebPages.zip. Any files you place in those folder over-
ride pages of the same name in the zip archive.

Contents of BuiltinWebPages.zip

The BuiltinWebPages.zip file contains four folders:

~AdminHTML

This folder contains HTML templates for pages that show the overall status of
the InterMapper program. People who have access to these pages may also
view all the separate map pages. You can access these files from the default
web URL, or by using a URL in this form:

http://intermapper.domainname.com/~admin/filename.html

~GuestHTML

This folder contains HTML templates for reporting errors such as missing or
invalid file names, and for responding to web clients who are not authorized for
the web server. These files bypass the usual access list mechanism; you can
access them using this URL form:

http://intermapper.domainname.com/~error/filename.html

~GuestImages

This folder contains images used by the InterMapper web server. These images
may be placed in a target or template file using the ${imageref: ... } macro.
PerMapHTML

This folder contains HTML templates that are used when displaying a map's
information. To view a specific document's information, use this URL form:

http://intermapper.domainname.com/docname

The zip archive also contains some supporting files, including JavaScript files, loc-
ated in the root of the folder.

- 217 -

Web Pages Folder

How the Web Page Files are Used
Main Web Page

The main web page is the ~admin/!index.html target file. When an unqualified
URL request arrives (that is, a request for "/", without any additional path of file
information), InterMapper sends out the file specified by ~admin/!index.html.
Main Template file

By default, all target files use the same template, "!template.html" (note the
exclamation point at the beginning of the filename). A target file may specify a
different template file by using the #template directive.
Default HTML page

For both the "~AdminHTML" and "PerMapHTML" folders, the default HTML page
is "!index.html". A request for http://intermapper.domain.com/ is treated
like a request for

http://intermapper.domain.com/~admin/!index.html.

Similarly, a request for

http://intermapper.domain.com/docname

will be treated like a request for

http://intermapper.domain.com/docname/document/main/!index.html.

- 218 -

Chapter 11: Customizing Web Pages

MIME Types
You can associate a template or target file's suffix with MIME-type information you
want to send with the file. You create this association by placing a file named
"mimetypes" at the top level of the Web Pages folder.

Below is a sample mimetypes file:

Sample MIMEtypes file
Format is: <file-suffix> <whitespace> <MIME-descriptor>
wml text/vnd.wap.wml
wmls text/vnd.wap.wmlscript
wbmp image/vnd.wap.wbmp
wbxml application/vnd.wap.wbxml
wmlc application/vnd.wap.wmlc
wmlsc application/vnd.wap.wmlscriptc

Tip for Calling Charts
When calling charts through the web server, you can control the height and width
of the chart by passing parameters with the URL. You can also control the time
scale.

To control the height and width of the chart:

l Enter height & width tags for charts as

http://.../!chart.html?height=xxx&width=yyy

l Tip: To enter different time scale,

http://.../!chart.html?time=XXXXX

- 219 -

Command-line Options for InterMapper
You can call InterMapper and InterMapper RemoteAccess from a command line,
and control a significant number of functions. This can be useful for automating the
updating of maps, or for various testing purposes.

For detailed information on the use of the command-line for scripting InterMapper
and InterMapper RemoteAccess, see Command-line Options for InterMapper and
Command-line Options for InterMapper RemoteAccessin the User Guide's Refer-
ence section as well as InterMapper HTTP API in this manual.

- 220 -

Chapter 12

- 221 -

Index

$

${bodytext} 210

A

Abs 83

Add 115

Comments 115

Addition, Subtraction 82

ADDRESS 152

Address_type 13, 137

Admin 210

Admin/!index.html 218

AdminHTML 217

Administrators 202

Agreement 6

ALARM 115, 126

Alarm Point 72, 76, 81

Alarm/warning 18

Alert 11

ALRM 126

ALRM Response 137

Alt_title 206, 209

anchor 216

Annotated Example 134

FTP 123

APC-UPS MIB 61

AppleTalk 136, 212

AppleTalk datagrams 8

AppleTalk NBP 212

Argument Format 115

ASN.1 109

Auth 176

Authpassword 176

autorecord 21

B

B/Bold 34

B5/Custom TCP
Information/0P 137

Base-64 120

Base64 90, 120

Big-endian 90

Bitand 83

Bitlshift 83

Bitor 83

Bitrshift 83

Bitwise 82

functions 82

Bitxor 83

BODY 205

BODY BGCOLOR 205

Bodytext 205

Branch Not Equal 123

Buffer 123

Build/compile 139, 152

Built-in Macros 120

Built-in Numeric Functions 83

Built-in String Functions 83

Built-in Target Files 204

Builtin 12

C

CALCULATION 54

Index

- 222 -

Calculation Variables 54

Calling Charts 219

Carriage-return 135

Carriage Return 117

Case-insensitive 117

Case-Sensitivity 117

Controlling 117

Changed Web Page Files 202

Reloading 202

Chart 52

CHART LEGEND 52

Chart.html 204

Chart.html?height 219

Chart.html?time 219

Chartable 56

Chartlist 211

chartname 211

CHCK 123

Com.dartware 12, 16, 137

Com.dartware.tcp.custom 13, 16,
137

Comma-separated 52

Comma-separated list 13

Command-line 12, 139

Create 139

Command-line Probe 139

Installing 141

Command Line Interface 220

Command Line Nagios Plug-in
Example 149

Command Line Probes 139

Command List 125

Comments 115

Adding 115

Comparisons 59

Creating 59

ConCATenate 124

Concatenation 82

Conditional Expression 82

CONN 123, 137

Connect_timeout 123

Connecttime 133

Consequently 175

Contributions 172

Controlling 117

Case-Sensitivity 117

Cos 83

CPU 50

CR-LF 128, 137

specify 126

Creating 59, 139, 153

Command-line 139

Comparisons 59

Nagios Probes 153

Currentlinkoutages 210

Currentoutages 210

Custom-snmp 12

Custom Probe File Format 10

Custom Probes 171

Installing 171

Custom SNMP Probes to DOWN

- 223 -

Custom SNMP Probes 12, 32, 50, 69

Header Section 15

Custom TCP 12, 16, 20, 137

Custom TCP script 137

Dartware-provided probe 137

Customizing 32, 202

Status windows 32

Web Pages 202

Customtimer 136

CVSPASSWORD 120

D

Daemon 139

Dartware MIB 109

Datagram 115

Datagrams/sec 32, 69

Date-last-modified 207

Debug file 176

Debug window 174

Open 174

See 176

Debugyyyymmddhhmm.txt 176

Default

Per-second 53

DEFAULT 53

Default HTML 218

Default Values 119

Defines 52

Defines:OIDs 52

Deprecated 130

DES 176

Des|none 176

Description 17

Device I/O Commands 123

Device List window 123

Device.html 204, 214

Deviceaddress 212

Deviceid 212

Devicelist 212

Devicename 212

Digit.digit 207

Directives 206

DISC 123

Discfail 123

DISCONNECT 138

display_name 13

DNS 16, 212

DNS name/IP 171

DOCTYPE HTML PUBLIC 205

Document.html 204

DONE 123

Use 124

values 126

DONE ALRM 126, 138

DONE DOWN 134, 138

DONE OKAY 134, 138

DONE WARN 134, 138

Double-precision 82

Double Quote 117

DOWN 8, 115, 126, 137

set 137

Index

- 224 -

DOWN Response 137

E

E-mail 5

Edit menu 202

ELSE 116

End 176

MIB 176

Endian 90

Enter 178

snmpwalk 176

Enterprise 6306 109

Equality Tests 82

Error Conditions 179

Errors/minute 32, 69

Errorstatus 210

Errorstatus_orig 210

EVAL 124

Example TCP Probe FileThe 137

Excel 82

EXIT 123

Use 124

EXIT_CODE 143

Exp 82

EXPecT 128

Expr 82

EXPT 123, 138

Use 124

Extract 89

substring 89

F

FAIL 123, 128

FALSE

value 82

File-to-be-included.html 210

File Names 16

FLAGS 15

Fmt 83

Folder Structure 217

Footer.incl 205

Format 50, 219

Formfeed 117

Forwarded datagrams 52, 55

From

Server Settings 202

FTP 123

Annotated Example 134

number 123

FTP USER 135

Send 123

Fullstatus 210

FUNCTION 82

Function Descriptions 84

FUNCTION substr 89

Functions 82

bitwise 82

G

GB/Custom TCP Probe/P 137

Geneva 33

Get-Next-Request 61

Get Info window to Include

- 225 -

Get Info window 11

GetNextRequest 175

GOTO 116, 123, 138

Use 124

GOTO Command 119

Greetings 131

Greetings!/r/n 123

GuestHTML 217

GuestImages 205, 217

Guests 202

H

Handling 115

Script Failures 115

HEAD 205

Header Parts 12

Header Section 15

Custom SNMP Probes 12

HelpSystems-provided probe 137

Custom TCP script 137

Hexadecimal 53

Hexadecimal - Displays 50

Hexadecimal Number 117

Horizontal Tab 117

Hosting

InterMapper 139

HREF 204, 208

HTML 35, 122, 203, 205-206, 210,
217

shows 210

Use 206

Htmlrefreshmetaoptions 214

Htmlrefreshmetatag 214

httpparams_endchart 215

httpparams_nextchart 215

httpparams_prevchart 215

httpparams_startchart 215

httpparams_timescale 215

Human_name 13, 137

Hyperlinks 33

making 33

I

ICMP 15, 136

send 15

ID 124

IDLE 119, 138

Idlefail 124

IDLELINE 138

If apcups 61

Ifadmin 212

IfDescr 175

IfTable 177

IfXTable 177

Ignore 123

telnet 123

Imagefile 212

Imageref 205, 212, 217

Imagesuffix 212

Img 205, 212

Include 50, 82, 133

carriage-return 135

CPU 50

Index

- 226 -

SNMP MIB 82

WAIT 124

Incoming 123

Telnet 123

Incorrect login 134

Index.html 204, 206, 218

Indicates 176

SNMP 176

Installing 141, 171

Command-line Probe 139

Custom Probes 171

Integer 83

InterMapper Logs 178

InterMapper Remote 220

InterMapper Scripting Language 123

InterMapper Server

testing 220

InterMapper Settings 16, 152, 178,
217

Intermapper.domain.com 218

Intermapperaddress 212

Intermapperlogo 213

Invoking 178

snmpwalk 176

IP 12, 50, 54, 137, 139, 152, 176,
211

IP-address 176

IP-address startOID 176

IpForwarded datagrams 59

IpForwDatagrams 32, 52, 55, 69

IpInHdrErrors 32, 52, 55, 69

Issue 128

LINE OFF command 123

J

Jpeg 212

jsrefreshmetaoptions 214

Jumping 119

Label 115

L

Label 115

Jumping 119

Label_name 119

LDAP 8

Len 83

Level 217, 219

Web Pages 217, 219

LF 128

Limit 16

Macintosh file 16

LINE 117, 123, 137

Use 124

LINE OFF 128

LINE ON 128

Link 209

Link.html 204

Link/alias/shortcut 152

Little-endian 90

Local-
host/Map1/device/192.168.0.1-
%3ASNMP/!device.html 214

Logical And 82

Logical Or 82

Login to Network.html

- 227 -

Login 123

Logo.gif file 205

M

M1++/Big 34

Mac OS 139

Macintosh file 16

limit 16

Macro Reference 210

Macroname 210

Main Template file 218

Main Web Page 218

maintenance mode 75

Maplist 211

Maplistwithcharts 211

Mapname 212

Markup Commands 33

Markup Tag Summary 33

MaTCH 129

Matches 60, 82, 117

String 50, 82, 115

Maxrows 211

Maxvars 61

MD5 176

Md5|sha|none 176

Measuring 136

Response Times 136

Meta 208

Meta http-equiv 214

MIB 50, 52, 176

end 176

MIME-descriptor 219

MIME-type 219

MIME Types 219

Mimetypes 219

Mimetypes file 219

Min 82

MINIMAL 15

Modulo 82

Monaco 33

Monospace 33

Monospaced 32-33, 69

Msecs 138

MTCH 116, 123, 138

Multiplication, Division 82

MUST 115

N

N/A 174

NADD 124

Nagios 139, 152

uses 139

Nagios Plugins 139, 152

Nagios Probes 153

Creating 153

Nagios Template 152

Name 139

program/script 139

Name/value 18

NBGT 123

NBNE 124

Network.html 204

Index

- 228 -

NEXT 123

NOICMPFALLBACK 15

NOLINKS 15

Nomib2 61

Non-interpreted 141

NOOP 134

NOOP/r/n 123

NoSuchName 174

NTCREDENTIALS 15

NULL 174

Num 115

Num-OIDs 176

Number 52, 55, 123, 176

FTP 123

OIDs 176

TCP 52

Number:TCP 55

Numeric Add 123

Numeric Argument Format 115

Numeric Branch Greater Than 123

Numeric Branch Not Equal 123

Numeric Comparisons 60

O

Object ID 52

Octal Number 117

OctetString 178

OFF 123

OID 52, 174, 176

number 176

OID Error 175

OID:defines 52

OID:request 52

OK 115, 137

OK Response 137

OKAY 126

Old_protocol 16

Old_script 16

ON 123

P

P/Plain Text 34

Pagetitle 205, 212

Param 120

Parameter Section Example 20

PASS 134

PASSWORD 18

Password Fields 18

PATH 142

Pdutype 61

Per-minute 53

PER-SECOND 53

Perl 82, 139

Perl-like 82

PerMapHTML 217

PI 83

value 82

Plugin 152

Png 212

PORT 123, 142, 152

Port_num 123

Port_number 13, 137

Possible Failures to SBNE

- 229 -

Possible Failures 125

Precedence Table 82

Preventing 209

Quoted String From Becoming a
Link 209

Previousoutages 211

Priv 176

Privpassword 176

Probe Calculations 82

Probe Command Details 125

Probe Command Reference 123

scanning 128

Probe Comments 35

Probe Configuration window 17-18

probe data, recording 21

Probe File Description 17

Probe Files 16, 171

Probe Parameters 18

Probe Properties 61

Probe Type 10, 12, 152, 171

Probe Variables 52

Probe_name 13, 137

Probes 16, 139, 171

Probes/plugins 139, 153

Program Control 115

Using Labels 115

Program/script 139

name 139

Python 141

Q

Query 61

APC-UPS MIB 61

sysUptime MIB-2 61

QUIT/r/n 123

Quoted Links 203, 209

R

Recognize 134

USER 126

Relational Tests 82

Relative Offsets 119

Transfer Control 120

Reload 11, 202

Changed Web Page Files 202

REMOTEPORT 134

Request 52

Request:OID 52

Response 124

Response Times 136

Measuring 136

RFC 17

Runnable 141

Runnable/executable 152

S

Sample <snmp-device-threshold 50

Sample <snmp-device-variables 50

Sample Header Section 15

Sample MIMEtypes file 219

SBNE 124

Index

- 230 -

Scanning 128

Probe Command Reference 123

SCAT 124

Script 123

Script Command Format 115

Script Failures 115

Handling 115

Script Process Flow 115

Script Termination 119

Seconds 18

Secs 83, 124, 138

Select Misc 176

Select Probe window 13

SEND 15, 123, 137

FTP USER 135

ICMP 15

Use 124

Sending 8, 176

SNMP 8

Server Command 178

Server Settings 202

Servers 176, 202

Set 137

DOWN 137

SetNameFieldWidth 212

Simple snmpwalk facility 176

SKIP 123

SNMP 8, 12, 32, 50, 52, 61, 109, 174,
176

Snmp-device-display 10, 32, 51, 69,
136

Snmp-device-properties 10, 51, 61

Snmp-device-threshold 10-11, 51

Snmp-device-thresholds 10-11, 51

Snmp-device-variables 10-11, 51-52

SNMP FAQ 174

SNMP Get-Next-Request 52

SNMP Get-Request 61

SNMP MIB 82

SNMP OID 52

SNMP Response 174

SNMPv1 176

SNMPV2C 15, 176

SNMPv3 176

Snmpwalk 176

Invoking 178

Snmpwalk stopall 179

SNMPwalks 179

Special Character Example 117

Special Characters 117

Specifies 123

CR-LF 128

Sprintf 83

Sqrt 83

Start 176

SNMP 176

StartOID 176

STAT 123

STAT ALRM 132

Statshtml 211

Status 32

Status Window Text to Transfer Control

- 231 -

Status Window Text 52

Status windows 32, 52

Customizing 32

STOR 124

Str 82

Strftime 83

String 50, 82, 115, 123

Argument Format 115

Branch Not Equal 123

ConCATenate 124

foobar 132

Matches 60

Matching 82, 115

Strlen 83

Strptime 83

STRT 124, 136

STRT Starts 123

Stylings 33

Sub-expressions 82

Substr 83

Substring 89, 137

Extract 89

SysContact 60

SysDescr 52, 55

SysUptime MIB-2 61

T

Target File Example 203

Target File Is Read 204

TCP 8, 12, 32, 52, 55, 115, 126, 137

Number 52

TCP-based 32

Tcp-script 12, 137

TCP Script Commands 136

TCP Timers 136

Tcp.custom 13, 16, 137

TCP:Number 55

TcpCurrEstab 32, 52, 55, 69

Telnet 123, 179, 212

allows 126

ignore 123

incoming 123

Telnet window 179

Telnetserverurl 212

Template File Example 205

Template Files 205

Template.html 206, 218

Test Page 206, 209

Thresholds 50

TIME 123

Time Measurement Probe
Variables 136

TIME varname 136

Timeout 123, 138, 176

Timeout 60 133

TimeTicks 178

Title 205

TOO_LONG 131

Tools 152

Total-value 53

Transfer Control 120

Using Relative Offsets 120

Index

- 232 -

Traps

TrapVariable 99

TrapVariable 99

TRUE

value 82

Trunc 83

Type 52

U

UDP 8

Unary 82

Unexpected 121

Unix 139

Unix Linefeed 117

Unless-e 176

UP 115

UPPER CASE 115

UPPERCASE 126

Uptime 211

URL 203, 210, 217, 219

Url-to-invoke 13

Url_hint 13

Used 217

USER 126

recognize 134

User ID 134

Username 176

V

VALUE 82

Values 20, 52, 82, 126

DONE 123

FALSE 82

PI 83

TRUE 82

x1 83

Var 52, 82

Variable-name OID 50, 52

VariableName 52

Variables 115

Varname 136

Vertical Tab 117

W

WAIT 118, 124, 137

include 133

Use 124

WAIT timeout 123

Wait/p 137

i/Seconds 137

WARN 115, 126

WARN Response 120, 137

Web Page Files 218

Web Pages 202, 217, 219

Customizing 202

level 217, 219

Web Server 202

Webpageurl 215

Webserverurl 212

Whitespace 219

Wild-card Character Matching 118

Window_name 208

Windows to Windows

- 233 -

Windows 139

probes 139

	Introduction
	Software License Agreement

	Creating Your Own Probes
	Anatomy of a Probe
	The <header> Section
	The <description> Section
	The <parameters> Section
	The <datasets> section
	Automatically-Recorded Data Values
	Probe Status Windows
	IMML - InterMapper Markup Language
	Probe Comments
	Built-in Probe Variables and Macros
	Using Persistent Variables

	SNMP Probes
	The <snmp-device-variables> Section
	The <snmp-device-thresholds> Section
	The <snmp-device-properties> Section
	The <snmp-device-variables-ondemand> Section
	The <snmp-device-display> Section
	Using Disclosure Widgets
	The <snmp-device-alarmpoints> Section
	Alarm Point File Format
	Probe Calculations
	Specifying SNMP OIDs in Custom Probes
	SNMP Probe Example

	SNMP Trap Probes
	The <snmp-device-variables> Section For Traps
	The <snmp-device-display> Section for Traps
	Trap Viewing and Logging
	Example - Trap Viewer Probe
	The Dartware MIB

	TCP Probes
	The <script> Section
	The <script-output> Section
	TCP Probe Command Reference
	Measuring TCP Response Times
	Example TCP Probe File

	Command Line Probes
	The <command-line> Section
	The <command-exit> Section
	The <command-display> Section
	The <tool> Section
	Command Line Probe Example
	InterMapper Python Plugins
	Nagios Plugins
	Nagios Plugin Example
	NOAA Weather Probe Example

	PowerShell_Probe
	PowerShell Probe Examples
	Troubleshooting PowerShell Probes
	Working With Probe Files
	Installing and Reloading Probes
	Modifying Built-in Probes
	Sharing Probes

	Troubleshooting Probes
	Errors with Custom Probes
	Debugging with the SNMPWalk Command
	Using the SNMPWALK -o Option

	InterMapper HTTP API
	Importing & Exporting Files
	Importing & Exporting Tables
	Acknowledging with HTTP
	HTTP API Scripting Examples

	Retrieving Collected Data
	InterMapper Database Schemas
	Creating SQL Queries
	Using the load_data() function

	Customizing Web Pages
	Target Files
	Template Files
	Directives
	Quoted Links
	Macro Reference
	Web Pages Folder
	MIME Types
	Tip for Calling Charts

	Command-line Options for InterMapper
	Index

